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0. The Grand Tour1 

 
“The true voyage of discovery consists not of going to new places, 

but of having a new pair of eyes.” 

(Marcel Proust, 1871-1922) 
  

 
This book is a voyage of discovery.  You are about to learn three things: how computers work, 
how to break complex problems into manageable modules, and how to develop large-scale 
hardware and software systems.  None of these things will be taught explicitly.  Instead, we will 
engage you in the step-by-step creation of a complete computer system, from the ground up.  The 
lessons that we wish to impart, which are far more important than the computer itself, will be 
gained as side effects of this activity.  According to the psychologist Carl Rogers, “the only kind 
of learning which significantly influences behavior is self-discovered or self-appropriated -- truth 
that has been assimilated in experience.”  After teaching computer science for 30 years combined, 
we cannot agree more. 
  
Computer systems are based on many layers of abstractions.  Thus our voyage will consist of 
going from one abstraction to the other.  This can be done in two directions.  The top-down route 
shows how high-level abstractions (e.g. commands in an object-oriented language) can be 
reduced into, or expressed by, simpler ones (e.g. operations on a virtual machine).  The bottom-up 
route shows how low-level abstractions (e.g. flip-flops) can be used to construct more complex 
ones (e.g. memory chips).  This book takes the latter approach: we’ll begin with the most basic 
elements possible -- primitive logic gates -- and work our way upward, constructing a general-
purpose computer, equipped with an operating system and a Java-like language. 
 
If building such a computer from scratch is like climbing the Everest, then planting a flag on the 
mountain’s top is like having the computer run some non-trivial application programs.  Since we 
are going to ascend this mountain from the ground up, we wish to start with a preview that goes 
in the opposite direction -- from the top down.  Thus, the Grand Tour presented in this chapter 
will start at the end of our journey, by demonstrating an interactive video game running on the 
complete target computer.  Next, we will drill through the main software and hardware 
abstractions that make this application work, all the way down to the bare bone transistors level. 
 
The resulting tour will be casual.  Instead of stopping to analyze each hardware and software 
abstraction thoroughly, we will descend quickly from one layer to the other, presenting a holistic 
picture that ignores many details.  In short, the purpose of this chapter is to “cut through” the 
layers of abstraction discussed in the book, providing a high-level map into which all the other 
chapters can be placed. 
 
 

                                                 
1 From The Elements of Computing Systems, Nisan & Schocken, MIT Press, forthcoming in 2003, www.idc.ac.il/csd 
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0. Background 
 
The World Below 
 
We assume that readers of this book are familiar with writing and debugging computer programs.  
Did you ever stop to think about the hardware and software systems that facilitate this art? Let’s 
take a look.  Suppose that we are developing some application using an object-oriented language.  
Typically, the process starts by abstracting the application using a set of classes and methods.  
Now, if we implement this design using a language like Java or C#, then the next step is to use a 
compiler to translate our high-level program into an intermediate code, designed to run on a 
virtual machine (VM).  Next, if we want to actually see our program running, the VM abstraction 
must be realized on some real computer.  This can be done by a program called VM translator, 
designed to convert VM code into the assembly language of the target computer.  The resulting 
code can then be translated into machine language, using yet another translator, called assembler.   
 
Of course machine language is also an abstraction -- an agreed upon set of binary codes. In order 
to make this abstract formalism do something for real, it must be realized by some hardware 
architecture. And this architecture, in turn, is implemented by a certain chip set -- registers, 
memory units, ALU, and so on.  Now, every one of these hardware devices is constructed from 
an integrated package of elementary logic gates.  And these gates, in turn, are built from 
primitive gates like Nand and Nor.  Of course every one of these gates consists of several 
switching devices, typically implemented by transistors.  And each transistor is made of ... Well, 
we won’t go further than that.  Why?  Because that’s where computer science ends and physics 
starts, and this book is about computer science. 
 
You may be thinking: “well, on my computer,  compiling and running a program is much easier -- 
all I do is click some icons or write some commands!”  Indeed, a modern computer system is like 
an iceberg, and most people get to see only the top.  Their knowledge of computing systems is 
sketchy and superficial. If, however, you wish to go under the surface and investigate the systems 
below, then Lucky You! There’s a fascinating world down there, below the GUI level and the OS 
shell.  An intimate understanding of this under-world is what separates naïve programmers from 
professional developers -- people who can create not only end-user applications, but also new 
hardware and software technologies. And the best way to understand how these technologies 
work -- and we mean understand them in the marrow of your bones -- is to build a computer from 
scratch.  Our journey begins at the top of Figure 0. 
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Multiple Layers of Abstraction 
 
This book walks you through the process of constructing a complete computer system: hardware, 
software, and all their interfaces.  You may wonder how it is possible.  After all, a computer 
system is an enormously complex enterprise!  Well, we break the project into modules, and we 
treat each module separately, in a stand-alone chapter.  You might then wonder: how it is possible 
to describe and construct these modules in isolation? Obviously they are all inter-related!  As we 
will show throughout the book, a good modular design implies just that: you can work on the  
individual modules independently, while completely ignoring the rest of the problem. It turns out 
that people are good at this strategy thanks to a unique human faculty: the ability to create and 
use abstractions. 
 
In computer science, an abstraction is simply a functional description of something.  For 
example, if we are asked to develop a digital camera chip that can detect close moving objects, 
we can do it using low-level components like CCD chips and some routines written in the C 
language.  Importantly, we don’t have to worry about how these low-level hardware and software 
modules are implemented -- we treat them as abstract artifacts with predictable and well-
documented behaviors.  In a similar fashion, once built, our camera chip may end up being used 
as a building block in a variety of Driver Assistance Systems (DAS) such as adaptive cruise 
control, blind spot detection, lane departure warning, and so on.  Now, the engineers who will 
build these DAS applications will care little about how our camera chip works.  They, too, will 
want to use it as an off-the-shelf component with a predictable and well-documented behavior.  In 
general then, when we operate in a particular level of a complex design, it is best to focus on that 
level only, “abstracting away” all the other parts of the system.  This may well be the most 
important design principle in building large-scale computing systems. 
 
Clearly, the notion of abstraction is not unique to computer science -- it is central to all scientific 
and engineering disciplines.  In fact, the ability to deal with abstractions is often considered a 
hallmark of human intelligence in general. Yet in computer science, we take the notion of 
abstractions one step further.  Looking “up” the construction hierarchy, the abstraction is viewed 
as a functional description of a given system, aimed at the people who may want to use it in 
constructing other, higher-level abstractions.  Looking “down”, the same abstraction is viewed as 
a complete system specification, aimed at the people who have to implement it. Therefore, 
computer scientists take special pain to define their abstractions clearly and unambiguously.   
 
Indeed, multi-layer abstractions can be found throughout computer science.  For example, the 
computer hardware is abstracted (read: “functionally described”) by its architecture – the set of 
machine level commands that it recognizes.  The operating system is abstracted by its system 
calls – the set of services that it provides to other programs.  Applications and software systems 
are abstracted by their Application Program Interfaces -- the set of object and method signatures 
that they support. Other levels of abstraction are defined and documented ad-hoc, at any given 
design level, as the situation demands. In fact, the identification and description of abstract 
components is the very first thing that we do when we set out to design a new hardware or 
software system. 
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System design is a practical art, and one which is best acquired from experience.  Therefore, in 
this book we don’t expect you to engage in designing systems.  Instead, we will present many 
classical hardware and software abstractions, and ask you to build them, following our guidelines.  
This is similar to saying that we don’t expect you to formulate new theorems, but rather to prove 
the ones we supply.  Continuing this analogy, you will start at the “bottom”, where two primitive 
hardware gates will be given, not unlike axioms in mathematics. You will then gradually build 
more and more complex hardware and software levels of abstraction, culminating in a full-scale 
computer system.  This will be an excellent example of an observation made by A.N. Whitehead 
in 1911: “civilization progresses by increasing the number of operations that can be performed 
without thinking about them”. Note that this sentence remains silent about who’s enabling the 
progress.  Well, that’s where you enter the picture.  
 
In particular, as you’ll progress in our journey, each chapter will provide a stand-alone 
intellectual unit: you need not remember the implementation details of previous systems, nor look 
ahead to future ones. Instead, in each chapter you will focus on two things only: the design of the 
current abstraction (a rich world of its own), and how it can be implemented using abstract 
building blocks from the level below.  Using this information, we will guide you in the 
construction of the current abstraction, turning it into yet another “operation that we can use 
without thinking about it”.  As you push ahead, it will be rather thrilling to look back and 
appreciate the computer that is gradually taking shape in the wake of your efforts.   
 
1. The Journey Starts: High-Level Language Land 
 
The term high-level is normally interpreted as “close to the human” (rather than low-level, which 
is close to the machine). In this book, it means the layer at which one interacts with the computer 
using an object-based programming language and an operating system. There are several reasons 
why it is difficult to completely separate the discussion of these two subjects.  First, modern 
operating systems are themselves written in high-level languages.  Second, a running program is 
a collection of many routines; some come from the application, some from the OS, but from the 
computer’s perspective they are all alike.  Also, modern languages like Java include elaborate 
software libraries and run-time environments. These language extensions perform GUI 
management, multi-threading, garbage collection, and many other services that were traditionally 
handled by the OS. 
 
For all these reasons, our discussion of high-level languages in chapter 8 will include many side-
tours into the operating system, which will be discussed and built in chapter 11.  The following is 
a preview of some of the underlying ideas.  
 
The Pong Game 
 
Video games are challenging programs. They use the computer’s screen and input units 
extensively, they require clever modeling of geometric objects and interactive events, and they 
must execute efficiently.  In short, video games pose a tough test to the hardware/software 
platform on which they run.  A simple yet non-trivial example is Pong -- the computer game 
depicted in Fig. 1.  In spite of its humble appearance, Pong is a historical celebrity: invented and 
built in the early 1980’s, it was the first computer game that became massively popular -- a 
success that gave rise to a thriving computer games industry. 
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FIGURE 1: The Pong Game (annotated screen shot from a real game session, running 
on the Hack computer built in the book).  A ball is moving on the screen randomly, 
bouncing off the screen “walls”.  The user can move a small bat horizontally by pressing 
the keyboard’s left and right arrow keys.  Each time the bat hits the ball, the user scores 
a point and the bat shrinks a little, to make the game harder.  If the user misses and the 
ball hits the bottom horizontal line, the game is over. 

 
If you will inspect the text and graphics of Fig. 1, you will have a clear understanding of what the 
Pong game is all about, but you will know nothing about  how it is actually built.  Indeed, at this 
point Pong will be merely an informal abstraction -- a theoretical artifact that exists only on 
paper.  The fact that it’s an abstraction, though, does not mean that we have to be informal about 
its description.  In particular, if we wish to implement Pong on some target computer platform, 
we must think hard on how to specify it formally.  A good abstract specification is by far the most 
important deliverable in the life cycle of any application.  
 
One reason why a formal specification is so important is because it forces us to articulate a 
particular design for the given application.  Normally, the design process begins by considering 
various ways to break the application into lower-level abstract components.   For example, a 
Pong application will most likely benefit from components that abstract the behaviors of 
graphical ball and bat objects.  What should these components do?  Well, the Bat component 
should probably provide such services as drawing the bat on the screen and moving it left and 
right.  In a similar fashion, the Ball component should feature services for drawing the ball, 
moving the ball in all directions, bouncing it off other objects, and so on. 
 
Thus, if we implement the game in some object-based language, it will make sense to describe 
the bat and ball objects as instances of abstract Bat and Ball classes.  Next, the various 
characteristics and operations of each object can be specified in terms of class properties and 
method signatures, respectively.  Taken together, these specifications will yield a document 
called the Pong Game Application Program Interface.  This API will be a complete specification 
of the modules that make up Pong, aimed at people who have to either build these modules, or, 
alternatively, use them in the context of other systems. 
  

 



Chapter 0: The grand Tour                                                                                                                      7     
              
A Quick Look at the High-Level Language 
 
Once an abstraction has been formally specified, it can be implemented in many different ways.  
For example, Program 2 gives a possible Jack implementation of the bat abstraction, necessary 
for building the Pong game (and, in fact, many other games involving graphical bats).  This being 
the first time that we encounter Jack in the book, a few words of introduction are in order.  Jack is 
a simple, Java-like language that has two important virtues.  First, if you have any experience in 
object-oriented programming, you can pick it up in just a few minutes.  Second, the Jack syntax 
was especially designed to simplify the construction of Jack compilers, as we will see shortly. 
 

/** A Graphic Bat for a Pong Game */
class Bat {

    field int x, y;            // screen location of the bat's top-left corner
    field int width, height;   // bat's width & height

    // The class constructor and most of the class methods are omitted

    /** Draws (color=true) or erases (color=false) the bat */

    method void draw(boolean color) {
       do Screen.setColor(color);

       do Screen.drawRectangle(x,y,x+width,y+height);
       return;

    }

    /** Moves the bat one step (4 pixels) to the right. */
    method void moveR() {

       do draw(false);  // erase the bat at the current location
       let x = x + 4;   // change the bat's X-location

       // but don't go beyond the screen's right border
        if ((x + width) > 511) {

           let x = 511 - width;
       }

       do draw(true);  // re-draw the bat in the new location
       return;

    }
}

A typical
call to an
operating
system
method

do Screen.drawRectangle(x,y,x+width,y+height);

 
PROGRAM 2: High-Level implementation of the bat abstraction, 
written in the Jack programming language.  

 
The code of Program 2 should be self-explanatory.  The Bat class (implementing the bat 
abstraction) encapsulates various bat-related services, implemented as methods.  Two of these 
methods are shown in the figure: a “draw” method by which a bat object draws itself on the 
screen, and a “moveR” method by which a bat object moves itself one step to the right.  Since the 
Bat class will come to play in the context of some overall program, it is likely to assume that the 
“drwaR” method will be invoked when the user presses the right arrow key on the keyboard.  
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However, this logic should not be part of the Bat class.  Instead, it belongs to some other module 
in the program, e.g. one that implements a game session abstraction.  
 
We will illustrate the design of object-based languages in Chapter 8, by specifying the Jack 
language and writing some sample applications in it.  This will set the stage for chapters 9 and 10, 
in which we discuss compilation techniques and build the Jack compiler. 
 
Peeking Inside the Operating System 
 
The computer platform that we will build in chapter 5, called Hack, features a black and white 
screen consisting of 256 rows by 512 columns (similar to that of hand-held computers and 
cellular telephones).  High level languages like Jack are expected to provide high-level means for 
interacting with this screen. Indeed, an inspection of Prog. 2  reveals two screen oriented method 
calls: Screen.setColor and Screen.drawRectangle.  The first method sets the default 
screen color (i.e. the color that subsequent drawing operations will use), and the second method 
draws a rectangle of given dimensions at  a given screen location.  These methods are part of a 
class called Screen, which is part of a software layer that interfaces between the Jack language 
and the Hack hardware. This software layer, called the Sack operating system, will be described 
and built in Chapter 11. 
 
Parts of the Screen class are shown in Program 3.  Since the Sack OS is also written in Jack, the 
code of the drawRectangle function should be self-explanatory: the rectangle is drawn using a 
simple nested loop logic.  What about the drawPixel function?  In the Hack platform that we 
will build in chapter 5, the computer’s screen will be memory-mapped.  In other words, a certain 
area in the computer’s random-access memory will be dedicated for representing the screen’s 
contents, one bit per pixel.  In addition, a refresh logic will be used to continuously re-draw the 
physical screen according to the current contents of its memory map.  Thus, when we tell 
Screen.drawPixel to “draw” a pixel in a certain screen location, all it has to do is change the 
corresponding bit in the screen memory map.  In the next iteration of the refresh loop (which runs 
several times each second), the change will be “automatically” reflected  on the computer screen. 
 
Because of their analog nature, input and output devices are always the clunkiest parts of digital 
computer architectures. Therefore, it is best to abstract I/O devices away from programmers, by 
encapsulating the operations that manipulate them in low-level OS routines. DrawPixel is a 
good example of this practice, as it provides a clean screen drawing abstraction not only for user-
level programs, but also for other OS routines like drawRectangle.  
 
Once again, we see the power of abstractions at work.  Beginning at the top of the software 
hierarchy (e.g. Pong), we find programmers who draw graphical images using abstract operations 
like drawRectangle.  This method signature is part of the Sack OS API, and thus one is free to 
invoke it in programming languages that run on top of Hack/Sack platform.  When we drill down 
to the OS level, we see that the drawRectangle abstraction is implemented using the services 
of drawPixel, which is yet another, lower-level abstraction.  Indeed, the abstraction-
implementation interplay can run deep -- as deep as the designer wants. 
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/** An OS-level screen driver that abstracts the computer's physical screen */
class Screen {

     static boolean currentColor;  // the current color

     // The Screen class is a collection of methods, each implementing one
     // abstract screen-oriented operation.  Most of this code is omitted.

     /** Draws a single pixel in the current color. */

     function void drawPixel(int x, int y) {
         // Draws the pixel in screen location (x,y) by writing corresponding

         // bits in the screen memory map. The method code is omitted.     }

     /** Draws a rectangle in the current color. */
     // the rectangle's top left corner is anchored at screen location (x0,y0)

     // and its width and length are x1 and y1, respectively.
     function void drawRectangle(int x0, int y0, int x1, int y1) {

         var int x, y;
         let x = x0;

         while (x < x1) {
             let y = y0;

             while(y < y1) {
                do Screen.drawPixel(x,y);

                let y = y+1;
             }

             let x = x+1;
         }

     }
}

 
PROGRAM 3: Code segment from the Sack operating system, 
written in the Jack language.  (In Jack, class-level methods that don’t 
operate on any particular object are called “functions”.) 

 
 
The screen driver discussed above is just a small part the Sack OS. The overall operating system 
is an elaborate collection of software libraries, designed to manage the computer’s input, output, 
and memory devices, as well as provide mathematical, string, and array processing services to 
high-level languages. Like other modern operating systems, Sack itself is written in a high level 
language (in our case, Jack).  This may seem surprising to readers who are used to operate on top 
of a proprietary operating system that gives no access to its source code. We will open the OS 
black box in Chapter 11, where we present several geometric, arithmetic, and memory 
management algorithms, each being a computer science gem. These algorithms will be discussed 
in the context of building a Sack OS implementation. 
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2. The Journey Continues: the Road Down to Hardware Land 
 
We now start crossing the great chasm between the high-level language abstraction and its low-
level implementation in hardware.  Before a program can actually run and do something for real, 
it must be translated into the machine language of some target computer.  The translation process 
-- known as compilation -- is often performed in two stages.  In the first stage, a compiler 
translates the high-level code into an intermediate abstraction called virtual machine.  In the 
second stage, the virtual machine abstraction is implemented on the target hardware platform(s).   
We devote a third of the book for discussing these fundamental software engineering issues.  The 
following is a preview of some of the ideas involved. 
 
The Compiler at a Glance 
 
Think about the general challenge of translating a sentence from one language to another.  The 
first thing that you will do is use the grammar rules of the source language (perhaps implicitly) to 
figure out the syntactic structure of the given sentence. The translation of programming languages 
follows the same rationale.  Each programming language has a well-documented grammar that 
defines how valid statements and expressions are structured in the language.  Using this grammar, 
the compiler developer can write a program that converts the source code into some recursive 
data structure, designed to represent the code in a convenient way for further processing.  The 
output of this syntax analyzer program (also called parser) can typically be described in terms of 
a parse tree.  For example, Fig. 4 illustrates the parse tree of a high-level expression taken from 
Program 2. 
  

Source code

(x+width)>511

Intermediate code

push x
push width
add
push 511
gt

code
generation

Syntax
Analysis

Semantic
Synthesis

parsing

widthx

+ 511

>

Abstraction ImplementationParse
Tree

 
 

FIGURE 4: Compilation example 
 
Once the source code has been “understood,” i.e. parsed, it can be further translated into some 
target language (this time, using the grammar rules of the latter) -- typically the machine language 
of the target computer.  However, the approach taken by modern compilers, e.g. those of Java and 
C#, is to first break the parsed code into generic processing steps, designed to run on some 
abstract “machine”.  Importantly, the resulting intermediate code depends on neither the source of 
the translation, nor on its final destination.  Therefore, it is quite easy to compile it further into 
multiple target platforms, as needed. Of course the exact specification of the “generic processing 
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steps” is a key design issue.  In fact, this intermediate code form is important enough so that it is 
often formalized as a stand-alone abstraction, called  Virtual Machine or VM. 
 
As it turns out, it is convenient to express the VM operations using a postfix format called (for 
historical reasons) Right Polish Notation or RPN.  For example, the source expression 
“(x+width)>511” is expressed in infix notation, meaning that operators are written between 
their operands, simply because that’s how human programmers are trained to think.  In postfix 
notation, operators are written after the operands, as in “x,width,+,511,>”. This parentheses-
free format is flattened and “un-nested”, and thus it lends itself nicely to low-level processing.  
Therefore, one thing that we want our compiler to do is translate the original code into some 
postfix language, as seen in the right of Fig. 4.  How does the compiler achieve this translation 
task?  
 
An inspection of Fig. 4 suggests that the postfix target code can be generated by the following 
algorithm:  

 Perform a complete recursive depth-first processing of the parse tree; 

 When reaching a terminal node x, generate the command “push x”; 

 When backtracking to a an interim node from the right, generate the command which is 
the node’s label.  

 
One question that comes to mind is whether this algorithm scales up to compiling a complete 
program rather than a single expression.  The answer is yes.  Any given program, no matter how 
complex, can be expressed as a parse tree.  The compiler will not necessarily hold the entire tree 
in memory, but it will create and manipulate it using precisely the same techniques illustrated 
above. 
 
The theory and practice of compilation are normally covered in a full-semester course.  This book 
devotes two chapters to the subject, focusing on the most important ideas in syntax analysis and 
code generation.  In chapter 9, we will build a parser that translates Jack programs into parse 
trees, expressed as XML files.  In chapter 10, we will upgrade this parser into a compilation 
engine that produces VM code. The result will be a full-scale Jack compiler. 
 
Virtual Machine Preview 
 
To reiterate, many modern compilers don’t generate machine code directly.  Instead, they 
generate intermediate code designed to run on an abstract computer called Virtual Machine.  
There are several possible paradigms on which to base a virtual machine architecture.  Perhaps 
the cleanest and most popular one is the stack machine model, used in the Java Virtual Machine 
as well in the VM that we build in this book. 
 
A stack is an abstract data structure that supports two basic operations: push and pop.  The push 
operation adds an element to the “top” of the stack; the element that was previously on top is 
pushed “below” the newly added element.  The pop operation retrieves and removes the top 
element off the stack; the element just “below” it moves up to the top position. The “add” 
operation removes the top two elements and puts their sum at the top. In a similar fashion, the 
“gt” operation (greater than) removes the top two elements.  If the first is greater than the 
second, it puts the constant true at the top; otherwise it puts the constant false. 
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To illustrate stack processing in action, consider the following high-level code segment, taken 
from our bat implementation (Program 2): 
 

if ((x+width)>511) { 
   let x=511-width; 
} 

 
Fig. 5 shows how the semantics of this code can be expressed in a stack-based formalism.  
 

// VM implementation of "if ((x+width)>511){let x=511-width;}"

   push x       // s1: push the value of x to the stack top

   push width   // s2: push the value of width to the stack top

   add          // s3: pop the top two values, push their sum

   push 511     // s4: push the constant 511

   gt           // s5: pop the top two values, if 1st>2nd push true

   if-goto L1   // s6: pop the top value, if it's true goto L1

   goto L2      // s7: skip the conditional code

L1:

   push 511     // s8: push the constant 511

   push width   // s9: push the value of width to the stack top

   sub          // s10: pop the top two values, push 1st-2nd

   pop x        // s11: pop the top value into x

L2:

...
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PIGURE 5: Virtual Machine code segment (top) and run-time scenario (bottom). To connect 
the two figures, we have annotated the VM commands and the stack images with state markers. (In 
stack diagrams, the next available slot is typically marked by the label sp, for stack pointer. 
Following convention, the stack is drawn upside down, as if it grows downward.) 

 
The VM language and its impact on the stack are explained in the program’s comments.  This 
basic language, which provides stack arithmetic and control flow capabilities,  will be developed 
and implemented in Chapter 6. Next, in Chapter 7, we will extend it into a more powerful 
abstraction, capable of handling multi-method and object-based programs as well.  The resulting 
language will be modeled after the Java Virtual Machine (JVM) paradigm. 
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There is no need to delve further into the VM world here.  Rather, it is sufficient to appreciate the 
general idea, which is as follows: instead of translating high level programs directly into the 
machine language of a specific computer, we first compile them into an  intermediate code that 
runs on a virtual machine.  The flip-side of this strategy is that in order to run the abstract VM 
programs for real, we must implement the VM on some real computer platform. 
 
VM Implementation: One way to implement VM programs on a target hardware platform is to 
translate the VM code into the platform’s native code.  The program that carries out the 
translation --  VM translator -- is a stand-alone module which is based of two interfaces: the 
specification of the source VM language, and the specification of the target machine language.  
Yet in the larger picture of our grand tour, the VM translator can also be seen as the backend 
module of a two-stage compiler.  First, the compiler described in the previous section translates 
the high level program into an intermediate VM code.  Next, the VM translator translates the VM 
code into the native code of the target computer.  This two-stage compilation model has many 
virtues, in particular code portability.  Indeed, virtual machines and VM translators are becoming 
a common layer in modern software hierarchies, Java and .NET being two well-known examples. 
 
In addition to its practical relevance, the study of virtual machine implementations is an excellent 
way to get acquainted with several classical computer science topics.  These include program 
translation, push-down automata, and implementation of stack-based data structures.  We will 
spend chapters 6 and 7 explaining these ideas and techniques, while building a VM 
implementation for the Hack platform.  Of course Hack is just one possibility.  The same VM can 
be realized on personal computers, cellular telephones, game machines, and so on. This cross-
platform compatibility will require the development of different VM translators, one for each 
target platform. 
 
Low-Level Programming Sampler 
 
Every hardware platform is equipped with a native instruction set that comes in two flavors: 
machine language and assembly language.  The former consists of binary instructions that 
humans (unlike machines) find difficult to read and write. The latter is a symbolic version of the 
former, designed to bring low-level programming closer to human comprehension.  Yet the 
assembly extension is mainly a syntactical upgrade, and writing and reading assembly programs 
remains an obscure art. As Fig. 6 illustrates, Hack programming is no exception. 
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...

   push x

   push width

   add

   push 511

   gt

   if-goto L1

   goto L2

L1:

   push 511

   push width

   sub

   pop x

L2:

...

// push 511

@511

D=A   // D=511

@SP

A=M

M=D   // *SP=D

@SP

M=M+1 // SP++

Virtual machine program

Assembly program

0000000000000000

1110110010001000

Machine Language
Program

 
VM translator

 
Assembler

push 511

@SP
M=M+1 // SP++

 
PROGRAM 6: From VM to assembly to binary code. There is no need 
to understand the code segments.  Instead, it is enough to appreciate the 
big picture, which depicts a cascading translation process. 

 
When we translate a high-level program into machine language, each high-level command is 
implemented as several low-level instructions.  If the translator generates this code in assembly, 
the code has to be further translated into machine language.  This translation is carried out by a 
program called assembler. 
 
In order to read low-level code, one must have an abstract understanding of the underlying 
hardware platform -- in our case Hack.  The Hack computer is equipped with two registers named 
D and A and a Random Access Memory unit consisting of 32K memory locations.  The hardware 
is wired in such a way that the RAM chip always selects the location whose address is the current 
value of the A-register.  The selected memory location -- RAM[A] -- is denoted M.  With this 
notation in mind, Hack assembly commands are designed to manipulate three registers named A, 
D, and M.  For example, if we want to add the value stored in memory location 75 to the D-
register,  we can issue the two commands “set A to 75” and “set D to D+M”.  The Hack assembly 
language expresses these commands as “@75” and “D=D+M”, respectively. The rationale behind 
this syntax will become clear when we will build the Hack chips-set in chapters 2 and 3. 
 
One extension that makes assembly languages rather powerful is the ability to refer to memory 
locations using user-defined labels rather than fixed numeric addresses.  For example, let us 
assume that we can somehow tell the assembler that in this program, the symbol “sp” stands for 
memory location 0. This way, a high-level command like “sp++” could be translated into the two 
assembly instructions “@sp” and “M=M+1”.  The first instruction will cause the computer to select 
RAM[0], and the second to add 1 to the contents of RAM[0]. 
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We end this section with Fig. 7, which describes the semantics of Program 6.  This discussion is 
optional, and readers can skip it without losing the thread of the chapter. 
 

0
1

RAM

...
2

256 17
257 7035

...

258

sp 0
1

RAM

...
2

256 17
257 7035
258 511

sp

259
...

259

// push 511

@511

D=A   // D=511

@SP

A=M

M=D   // *SP=D

@SP

M=M+1 // SP++

push 511

sp

Stack
VM code

Assembly  code

VM abstraction

Implementation on the Hack platform

Before After

17
7035
511sp

Stack

17
7035

258 259

 
 

FIGURE 7: A typical abstract VM operation and its equivalent implementation on 
the Hack platform. The Hack code was created by the VM translator. We assume that 
the stack contains two arbitrary values (17 and 7035), and we track the pushing of 511 
to the stack’s top. Note that among other things, the VM translator maps the stack-base 
and the stack-pointer on RAM[256] and RAM[0], respectively. 

 
 
Exploring the Assembly and the Machine languages  
 
Although assembly is a low-level language that operates only a notch above the hardware, it is 
also an abstraction.  After all, an assembly program is simply a bunch of symbols written on 
paper, or stored on disk.  In order to turn these symbols into an executable program, we must 
translate them into binary instructions. This can be done rather easily, since the relationships 
between the machine’s binary and symbolic codes is readily available from the hardware 
specification.   
 
For example, the Hack computer uses two types of 16-bit instructions.  The left-most bit indicates 
which instruction we’re in: “0” for an address instruction and “1” for a compute instruction.  In 
the case of an address instruction, the remaining 15 bits specify a number which is typically 
interpreted as an address.  Thus, according to the language definition, the binary instruction 
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“0000000000010111”, whose agreed-upon assembly code is “@23”, implies the operation “set 
the A-register to 23” (10111 in binary is 23 in decimal).  In a similar fashion, if the symbol “sp” 
happens to point to address 0 in the RAM, the assembly instruction “@sp” will be equivalent to 
“@0”, yielding “0000000000000000” in binary, which means “set the A-register to 0”. 
 
The second Hack instruction, called compute, has the assembly format “dest=comp;jump”. 
This specification answers three questions: what to compute (comp), where to store the computed 
value (dest), and what to do next (jump).  Altogether, the language specification includes 28 
comp, 8 dest, and 8 jump directives, and each one of them can be specified using either a binary 
code or a symbolic mnemonic.  For example, the comp directive “compute M-1” is coded as 
“0110010” in binary and as “M-1” in assembly.  The dest directive “store the result in M”  is 
coded as “001” in binary and as “M” in assembly.  The jump directive “no jump”  is coded as 
“000” in binary and as a null instruction field in assembly.  Finally, the language specification 
says how the comp, dest, and jump fields should be mapped on the 16-bit machine instruction.  
Assembling all these codes together, we get the example shown in Fig. 8. 
 

Machine language syntax
0 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0

1 1  1 0  0  1 0  0  01  1  1  0  1  1  1

Instruction code
(0=address inst.) Address

ALU
operation code

(M-1)

Destination
Code

(M)

Jump
Code

(no jump)

Semantics, as interpreted by the Hack hardware platform

Instruction code
(1=compute  inst.)

0000000000000000

1111110111001000
@0

M=M-1

 
FIGURE 8: Instruction semantics in the Hack platform (example, focusing on 
two sample instructions).  Note that the second and third most-significant  bits in 
the compute instruction are not used, and are set to 1 as a language convention. 

 
We see that the relationship between assembly and binary codes is a simple syntactical contract.  
Thus, if we are given a program written in assembly, we can convert each symbolic mnemonic to 
its respective binary code, and then assemble the resulting codes into complete binary 
instructions.  This straightforward text processing task can be easily automated, and thus we can 
write a computer program to do it -- an assembler.   The design of assembly languages, symbol 
tables and assemblers is the subject of Chapter 4.  As the chapter progresses, we will build an 
assembler for the Hack platform. 
 
We have reached a landmark in our Grand Tour -- the bottom of the software hierarchy.  The next 
step down the abstraction-implementation route will take us into a new territory -- the top of the 
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hardware hierarchy.  The linchpin that connects these two worlds is the hardware architecture, 
designed to realize the semantics of the machine language software. 
 
3. The Journey ends: Hardware Land 
 
Let us pause for a moment to appreciate where we stand in our journey. A program written in a 
high level language, represented in an intermediate VM code, has been translated to binary code, 
which should now run on a computer platform. Somehow, these various hardware/software 
modules (that in reality may well come from different companies) must work together flawlessly, 
delivering the intended program functionality.  The key to success in building this remarkable 
complex is modular design, based on a series of contract-based, local, abstraction-implementation 
steps.  And the most profound step in this journey is the descent from machine language to the 
machine itself -- the point where software finally meets hardware.  One such hardware platform is 
seen in Diagram 9. Why did we choose this particular architecture? 
 
Computer Architecture Tour 
 
Almost all digital computers are built today according to a classical framework known as the Von 
Neumann model. Thus, if you want to understand computer architectures without taking a full 
semester course on the subject, your best bet is to study the main features of this fundamental 
model.  In that respect, our Hack computer strikes a good balance between power and simplicity.  
On the one hand, Hack is a simple Von Neumann computer that a student can build in one or two 
days of work, using the chips-set that we will build in chapters 1-3. On the other hand, Hack is 
sufficiently general to illustrate the key operating principles and hardware elements of any digital 
computer. 

Data
Memory

(M)

A
LUInstruction

Memory

instruction

A

D

M

Program
Counter

address of next
instruction

data in

data out

RAM(A)

 
DIAGRAM 9: The Hack computer platform (overview), focusing on main chips 
and main data and instruction busses.  To minimize clutter, the diagram does not 
show the control logic, the connection between the A-register and the data memory, 
and the connection between the A-register and the Program Counter. 
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The Hack computer is based on two memory units with separate address spaces, an ALU 
(Arithmetic Logic Unit), two registers, and a program counter.  The centerpiece of the 
architecture is the ALU -- a “calculator” chip that can compute many functions of interest on its 
inputs. The Instruction Memory, containing the instructions of the current program, is designed to 
emit the value of the memory location whose address is the current value of the Program 
Counter.  The Data Memory, containing the data on which the program operates, is designed to 
select, and emit the value of, the memory location whose address is the current value of the A-
register.  The overall computer operation, known as the fetch-execute cycle, is as follows. 
 
Execute: first, the instruction that emerged from the instruction memory is simultaneously fed to 
both the A-register and the ALU.  If it’s an address instruction (most significant bit = 0), the A-
register is set to the instruction’s 15-bit value and the instruction execution is over. If it’s a 
compute instruction (MSB=1), then the 7 bits of the instruction’s comp field tell the ALU which 
function to compute.  For example, as a convention, the code “0010011” instructs the ALU to 
compute the function “D-A” (the Hack ALU can compute 28 different functions on subsets of 
A,D, and M). The ALU output is then simultaneously routed to A, D, and M.  Each one of these 
registers is equipped with a “load bit” that enables/disables it to incoming data.  These bits, in 
turn, are connected to the 3 dest bits of the current instruction.  For example, the dest code 
“101” causes the machine to enable A, disable D, and enable M to the ALU output. 
 
Fetch: What should the machine do next? this question is determined by a simple control logic 
unit that probes the ALU output and the 3 jump bits of the current instruction.  Taken together, 
these inputs determine if a jump should materialize.  If so, the Program Counter is set to the value 
of the A-register (effecting a jump to the instruction pointed at by A).  If no jump should occur, 
the Program Counter increments by 1 (no jump).  Next, the instruction that the program counter 
points at emerges from the instruction memory, and the cycle continues. 
 
Confused?  Not to worry.  We will spend all of chapter 5 explaining and building this 
architecture, one hardware module at a time.  Further, you’ll be able to test your chips separately, 
making the overall computer construction surprisingly simple.  The actual construction of all the 
hardware elements will be done using Hardware Description Language (HDL) and a hardware 
simulator, as we now turn to describe. 
 
Gate Logic Appetizer 
 
An inspection of the computer architecture from Diagram 9 reveals two types of hardware 
elements: memory devices (registers, memories, counters), and processing devices (the ALU).  As 
it turns out, all these devices can be abstracted by Boolean functions, and these functions, in turn, 
can be realized using logic gates.  The general subject of logic design, also called digital design, 
is typically covered by a full-semester course.  We devote a quarter of the book to this subject 
(chapters 1-3), discussing the essentials of Boolean functions, combinational logic, and sequential 
logic.  The following is a preview of some of the ideas involved. 
 
Memory devices: A storage device, also called register, is a time-based abstraction consisting of 
a data input, a data output, and an input bit called load. The register is built in such a way that its 
output emits the same value over time, unless the load bit has been asserted, in which case the 
output is set to a new input value. In most computer architectures, this abstraction is implemented 
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using a primitive gate called D-flip-flop, which is capable of “remembering” a single bit over 
time.  More complex registers are then built on top of this gate, as seen in Fig. 10. 
 

32
DFF outin Bit out

load

in . . .Bit Bit Bit

32-bit register

out

load

binary cell (Bit)D-Flip-Flop

in 32

 
FIGURE 10:  From flip-flop gates to multi-bit registers.  A single-bit binary cell (also 
called Bit gate) is essentially a D-flip-flop with a loading capability.  A multi-bit register of 
width w can be built from w Bit gates.  (time-based chips are denoted by a small triangle, 
representing the clock input.)  

 
What about Random-Access Memories?  Well, a RAM device of length n and width w can be 
constructed as an array of n w-bit registers, equipped with direct-access logic. Indeed, all the 
memory devices of the computer -- registers, memories, and counters -- can be built by recursive 
ascent from D-Flip-Flops. These construction methods will be discussed in Chapter 3, where we 
use them to build all the memory chips of the Hack platform. 
 
Processing devices: All the arithmetic operations of the ALU, e.g. A+D, M+1, D-A, and so on, are 
based on addition.  Thus if you know how to add two binary numbers, you can build an ALU.  
How then do we add two binary numbers?  Well, we can do it exactly the same way we learned 
to add decimal numbers in elementary school: we add the digits in each position, right to left, 
while propagating the carry to the left.  Fig. 11 gives a Boolean logic implementation of this 
algorithm.  
 

(Example)  (Definition) 
a:  1 0 0 1  (9) a b Sum(a,b) Carry(a,b) 
b:  0 1 0 1  (5) 0 0 0 0 

carry bit:  0 0 0 1  0 1 1 0 
shifted carry bit: 0 0 0 1 0  1 0 1 0 

sum bit:  1 1 0 0  1 1 0 1 
a+b:  1 1 1 0 (14)     

Note: a+b = Sum(shifted carry bit, sum bit) 
 

FIGURE 11:  Binary addition by Boolean logic  
 
We see that binary addition can be viewed as a Boolean function, defined in terms of two simpler 
Boolean functions: Sum and Carry.  Said otherwise, the addition operation can be implemented 
by an Adder chip, based on two lower-level chips: Sum and Carry.  We note in passing that the 
adder chip and the ALU know nothing about “adding numbers”, neither do they know anything 
about “numbers” to begin with. Rather, they simply manipulate Boolean functions in a way that 
effects an addition operation (ideally, as quickly as possible).  
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Continuing in our reductive descent, how then should we implement the lower-level Sum and 
Carry abstractions?  For brevity, let us focus on Sum.  An inspection of this function’s truth table 
reveals that it is identical to that of the standard exclusive-or function, denoted Xor.  This function 
returns 1 when its two inputs have opposing values and 0 otherwise.  The next section shows how 
the Xor abstraction can be implemented using Hardware Description Language. 
 
Chip Design in a Nutshell 
 
Like all the other artifacts encountered in our long journey, a chip can be described in two 
different ways.  The chip abstraction -- also called interface -- is the set of inputs, outputs, and 
input-output transformations that the chip exposes to the outside world. The chip implementation, 
on the other hand, is a specification of a possible internal structure, designed to realize the chip 
interface.  This dual view is depicted in Diagram 12. 
 
 

Chip Abstraction (interface) Possible chip Implementation 

Xor
a

b
out

0     0       0
0     1       1
1     0       1
1     1       0

a     b      out

 

And

And
          Not

Or out

a

b

          Not

 
 

DIAGRAM 12: Chip design, using Xor as an example.  The shown design is based on 
the Boolean function Xor(a,b)=(a And Not(b)) Or (Not(a) And b). Other Xor 
implementations are possible, some involving less gates and connections. 

 
As usual, the chip abstraction is the right level of detail for people who want to use the chip as an 
off-the-shelf, black box component.  For example, the designers of the adder chip described in the 
previous section need not know anything about the internal structure of Xor.  All they need to 
know is the chip interface, as shown on the left side of Diagram 12.  At the same time, the people 
who have to build the Xor chip must be given some building plan, and this information is 
contained in the chip implementation diagram.  Note that this implementation is based on 
connecting interfaces of lower level abstractions -- those of the Not, And, and Or gates.  
  
Hardware Description Language: How can we turn a chip Diagram into an actual chip?  This 
task is commonly done today using a design tool called Hardware Description Language.  HDL 
is a formalism used to define and test chips: objects whose interfaces consist of input and output 
pins that carry Boolean signals, and whose bodies are composed of inter-connected collections of 
other, lower level, chips.  Program 13 gives an example.  
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CHIP Xor {
   IN a,b;

   OUT out;
   PARTS:

   Not(in=a,out=Nota);
   Not(in=b,out=Notb);

   And(a=a,b=Notb,out=aNotb);
   And(a=Nota,b=b,out=bNota);

   Or(a=aNotb,b=bNota,out=out);
}

 
 

PROGRAM 13: Typical HDL program, describing the Xor 
implementation from Diagram 12.  The labels Nota, Notb, aNotb 
and bNota define the connections of the lower-level gates. 

 
The HDL program gives a complete logical specification of the chip topology, describing all the 
lower-level components and connections of the chip architecture.  This program can be simulated 
by a hardware simulator, to ensure that the structure that it implies delivers the required chip 
functionality. If necessary, the HDL program can be debugged and improved.  Further, it can be 
fed into an optimizer program,  in an attempt to create a functionally equivalent chip geometry 
that includes as few gates and wire crossovers as possible.  Finally, the verified and optimized 
HDL program can be given to a fabrication facility that will stamp it in silicon. 
 
The reader may wander how HDL scales up to deal with realistically complex chips.  Well, the 
Hack hardware platform consists of some 20 chips, and every one of them can be described in 
less than one page of HDL code.  As usual, this parsimony is facilitated by modular design. 
 
The Nand Gate: An inspection of Program 13 raises the question: And what about lower-level 
gates like And, Or, and Not?  Well, they, too, can be constructed in HDL from more primitive 
gates.  Clearly, this recursive descent must stop somewhere, and in this book it stops at the Nand 
level. 

a b Nand(a,b) 
0 0 1 
0 1 1 
1 0 1 

out
a

b
NAND

 1 1 0 
 

DIAGRAM  14: Nand gate (Last stop of our Grand Tour) 
 
The Nand gate, implementing the trivial Boolean function depicted above, has two important 
properties.  First, it can be modeled in silicon directly and efficiently, using 4 transistors.  Second, 
as we will show in Chapter 1, any logic gate, and thus any conceivable chip, can be constructed 
recursively from (possibly many) Nand gates.  Thus, Nand gates provide the cement from which 
all hardware systems can be built.  
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The Last Stop: Physics 
 
Our Grand Tour has ended.  In this book, the lowest level of abstraction that we reach is the Nand 
gate, which is viewed as primitive. Thus we descend no further, accepting the Nand 
implementation as given.  Well, if we do want to peek downward, Diagram 15 shows an 
implementation of a Nand gate using CMOS (complementary metal-oxide semiconductor) 
technology.  Drilling one layer lower, we reach the realm of solid-state physics, where we see 
how MOS transistors are constructed. 
 

 
 

 
DIAGRAM 15: CMOS implementation of a Nand gate (left), based 
on 4 transistor abstractions.  A possible MOS  implementation of 
these transistors is shown on the right.  

 
Asking how Nand gates are built is clearly an important question, and one that leads to many 
levels of additional abstractions.  However, this journey will take us out of the synthetic worlds 
created by computer scientists, and into the natural world studied by statistical physics and 
quantum mechanics. 
 

* * * 
 
Back to the Mountain’s Foot 
 
This marks the end of our Grand Tour preview -- the descent from the high level regions of 
object-based software, all the way down to the bricks and mortar of the underlying hardware.  In 
the remainder of the book we will do precisely the opposite.  Starting with elementary logic gates 
(chapter 1), we will go bottom up to combinational and sequential chips (chapters 2-3), through 
the design of computer architectures (chapters 4-5) and software hierarchies (chapters 6-7), up to 
implementing modern compilers (chapter 9-10), high level programming languages (chapter 8), 
and operating systems (chapter 11).  We hope that the reader has gained a general idea of what 
lies ahead, and is eager to push forward on this grand tour of discovery.  So, assuming that you 
are ready and set, let the count down start: 1, 0, Go!  
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1. Boolean Logic1 

 
Such simple things,  

And we make of them something so complex it defeats us,  
Almost.   

(John Ashbery, American poet, 1927-) 
 

 
Every digital device – be it a personal computer, a cellular telephone, or a network router – is 
based on a set of chips designed to store and process information.  Although these chips come in 
many different shapes and forms, they are all made from the same building blocks: elementary 
logic gates.  The gates can be physically implemented in many different materials and fabrication 
technologies, but their logical behavior is consistent across all computers.  In this chapter we start 
out with one primitive logic gate – Nand – and build all the other logic gates from it.  The result 
will be a rather standard set of gates, which will be later used to construct our computer’s 
processing and storage chips.  This will be done in chapters 2 and 3, respectively. 
 
All the hardware chapters in the book, beginning with this one, have the same structure.  Each 
chapter is focused on a well-defined task, designed to construct or integrate a certain family of 
chips.  The prerequisite knowledge needed to approach this task is provided in a brief 
Background section.  The next section provides a complete Specification of the chips abstraction, 
i.e. the various services that they should deliver, one way or another.  Having presented the what, 
a subsequent Implementation section proposes guidelines and hints about how the chips can be 
implemented in practice. A Perspective section rounds up the chapter with comments on 
important topics that were left out from the discussion, with pointers to further reading and self-
study.  Each chapter concludes with a technical Build It section.  This section gives step-by-step 
instructions for actually building the chips on your home computer, using the hardware simulator 
supplied with the book. 
   
This being the first hardware chapter in the book, the Background section is somewhat lengthy, 
featuring a special section on Hardware Description and Simulation Tools.   
 
 
1. Background 
 
This chapter focuses on the construction of a family of simple chips called Boolean gates.  Since 
Boolean gates are physical implementations of Boolean functions, we start with a brief treatment 
of Boolean logic and Boolean functions.  We continue with a description of how Boolean gates 
can be inter-connected in order to achieve the complex functionality necessary for building 
typical hardware circuits.  We conclude the background section with a description of how 
hardware design is actually undertaken in practice, using software simulation. 
 

                                                 
1 From The Elements of Computing Systems, Nisan & Schocken, MIT Press, forthcoming in 2003, www.idc.ac.il/csd 
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Boolean Functions and Boolean Algebra 
 
Boolean algebra deals with Boolean (or binary) values that are typically labeled true/false, 1/0, 
yes/no, on/off, etc.  We will use 1 and 0.  A Boolean function is a function that operates on binary 
inputs and returns binary outputs. Since all computer hardware today is based on the 
representation and manipulation of binary values, Boolean functions play a central role in the 
specification, construction and optimization of hardware architectures. Hence, the ability to 
formulate and analyze Boolean functions is the first step toward constructing computer 
architectures. 
 
Truth Table representation of a Boolean Function: The simplest way to specify a Boolean 
function is to provide a full enumeration of all the possible values of the function’s input 
variables, along with the function’s output for each set of inputs. This is called the truth table 
representation of the function.  An example of a truth table for some arbitrary 3-input Boolean 
function is given in table 1.   
 

x y z ),,( zyxf
0 0 0 0 

0 0 1 0 

0 1 0 1 

0 1 1 0 

1 0 0 1 

1 0 1 0 

1 1 0 1 

1 1 1 0 
 

TABLE 1: Truth table of the Boolean function ))(),,( zyxzyxf +=   
 
The first three columns of Table 1 enumerate all the possible binary values of the function's 
variables.  For each one of the  possible tuples  (here n=3), the last column gives the 
value of .  

n2 nvv K1

)( 1 nvvf K

 
Boolean Expressions: In addition to the truth table specification, every Boolean function can 
also be specified using Boolean operations over its input variables.   The basic Boolean operators 
that are typically used are “And” (“x And y” is 1 exactly when both x and y are 1) “Or” (“x Or y” 
is 1 exactly when either x or y or both are 1), and “Not” (“Not x” is 1 exactly when x is 0).  We 
will use a common arithmetic-like notation for these operations: yx ⋅  (or yx ) means “x And y”, 

yx + means “x Or y” , and x  means “Not x”.    
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One may verify that the function whose truth-table was given in table 1 is equivalently given by 
the Boolean expression zyxzyxf ⋅+= )(),,(

0=
.  For example, let us evaluate this expression on the 

inputs , ,  (3rd row in the table).  Since y is 1, it follows that  and thus 0=x 1=y z 1=+ yx
111 =⋅01 =⋅ .  The complete verification of the equivalence between the expression and the truth 

table is achieved by evaluating the expression on each of the 8 possible input combinations, 
verifying that it yields the same value listed in the table’s right column. 
 
Canonical Representation: As it turns out, every Boolean function can be expressed using at 
least one Boolean expression called canonical representation.  Starting with the function’s truth 
table, we focus on all the rows for which the function has value 1.  For each such row, we 
construct a term created by And-ing together literals (variables or their negations) that fix the 
values of all the row’s inputs.  For example, let us focus on row 3 in Table 1, where the 
function’s value is indeed 1.  Since the variable values in this row are , , 0=x 1=y 0=z , we 
construct the term zyx .  Following the same procedure, we construct the terms zyx  and zyx  
for rows 5 and 7.  Now, if we’ll Or-together all these terms (for all the rows where the function 
has value 1), we get a Boolean expression that is equivalent to the given truth-table.  Thus the 
canonical representation of the Boolean function shown in Table 1 is 

zyxzyxzyxzyxf ++=),,( . 
 
This leads to an important conclusion: Every Boolean function, no matter how complex, can be 
expressed using three Boolean operators only: And, Or, and Not. 
 
Two-input Boolean Functions: An inspection of Table 1 reveals that the number of Boolean 
functions that can be defined over n binary variables is .  For example, the 16 Boolean 
functions spanned by two variables are listed in Table 2. 

n22

 
The 16 functions in Table 2 were constructed systematically, by enumerating all the possible 4-
wise combinations of binary values in the four right columns.   Each function has a conventional 
name that describes its underlying operation.  Here are some examples: the name of the Nor 
function is shorthand for Not-Or: take the Or of x and y, then negate the result. The Xor function -- 
shorthand for “exclusive or” -- returns 1 when its two variables have opposing truth-values and 0 
otherwise.  Conversely, the Equivalence function returns 1 when the two variables have identical 
truth-values.  The If x then y function (also known as yx → , or "x Implies y") returns 1 when x is 
0 or when both x and y are 1.  The other functions are self-explanatory.   
 
The Nand function (as well as the Nor function) has an interesting theoretical property: each one 
of the operations And, Or, and Not can be constructed from it (e.g. x Or y = (x Nand x) Nand (y 
Nand y).  Since, as we have seen, every Boolean function can be constructed from And, Or, and 
Not operations using the canonical representation method, it follows that every Boolean function 
can be constructed from Nand operations alone.  This result has important practical implications: 
once we have in our disposal a physical device that implements the Nand operation, we can 
implement in hardware any Boolean function. 
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x 0 0 1 1 
Function 

y 0 1 0 1 

Constant 0 0 0 0 0 0 
And yx ⋅  0 0 0 1 
x And Not y yx ⋅  0 0 1 0 
x x  0 0 1 1 
Not x And y yx ⋅  0 1 0 0 
y y 0 1 0 1 
Xor yxyx ⋅+⋅  0 1 1 0 
Or yx +  0 1 1 1 
Nor yx +  1 0 0 0 

Equivalence yxyx ⋅+⋅  1 0 0 1 
Not  y y  1 0 1 0 
If y then x yx +  1 0 1 1 
Not x x  1 1 0 0 
IF x then y yx +  1 1 0 1 

Nand yx ⋅  1 1 1 0 

Constant 1  1 1 1 1 1 
 

TABLE 2: All the Boolean functions of two variables along with their 
common names, notations, and truth table definitions. 

 
 
Gate Logic 
 
A gate is a physical implementation of a Boolean function.  Typically, gates are built from tiny 
switching devices, called transistors, wired in a certain topology designed to effect the gate 
functionality.  Although most digital computers use electricity to represent and transmit binary 
data from one gate to another, any alternative technology permitting switching and conducting 
capabilities can be employed. Indeed, during the last 50 years researchers have built many 
hardware implementations of Boolean functions, including magnetic, optical, biological, 
hydraulic, and even tinker toy–based, mechanisms.  Today, most gates are implemented as 
transistors etched in Silicon, packaged as chips.  In this book we use the words chip and gate 
interchangeably, tending to use the term gates for simple chips. 
 
The availability of alternative switching technology options, on the one hand, and the observation 
that Boolean algebra can be used to abstract the behavior of any such technology, on the other, is 
extremely important.  Basically, it implies that computer scientists don't have to worry about 
physical things like electricity, circuits, switches, relays, and power supply.  Instead, computer 
scientists can be content with the abstract notions of Boolean algebra and logic gates, trusting that 
someone else (the physicists and electrical engineers – god bless their souls) will figure out how 
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to actually realize them in hardware.  Hence, a primitive gate (see Diagram 3) can be viewed as a 
black box device that implements an elementary logical operation in one way or another – we 
don't care how.  A hardware designer starts from such primitive gates and designs more 
complicated functionality by inter-connecting them, leading to the construction of composite 
gates. 
 

 

outAndb
a

 
 

 
a
b outOr

 

 

Notin out

 

 
DIAGRAM 3: Standard symbolic notation of some elementary logic gates.   

 
Primitive and Composite Gates: Since all logic gates have the same input and output semantics 
(0's and 1's), they can be chained together, creating composite gates of arbitrary complexity.  For 
example, suppose we are asked to implement the 3-way Boolean function And(a,b,c).  Using 
Boolean algebra, we can begin by observing that cbacba ⋅⋅=⋅⋅ )( , or, using prefix notation, 
And(a,b,c)= And(And(a,b),c).  Next, we can use this result to construct the composite gate 
depicted in the right side of Diagram 4.   
 

Gate Interface Gate Implementation 

out
a
b And
c

If a=b=c=1 then out=1
else out=0

 

a
And

b
Andc

out

 
  

DIAGRAM 4: Composite implementation of a 3-way And gate, based on the 
observation And(a,b,c)=And(And(a,b),c). The rectangle on the right defines 
the conceptual boundaries of the gate interface. 

 
The construction described in Diagram 4 is a simple example of “gate logic,” also called “logic 
design”.  Simply put, logic design is the art of inter-connecting elementary gates in order to 
implement more complex functionality, leading to the notion of composite gates.  Since 
composite gates are themselves realizations of (possibly complex) Boolean functions, their 
“outside appearance” (e.g. left side of Diagram 4) looks just like that of primitive gates.  At the 
same time, their internal structure can be rather complex. 
 
We see that any given logic gate can be viewed from two different perspectives: external and 
internal. The right-hand side of Diagram 4 gives the gate's internal architecture, or 
implementation, whereas the left side shows only the gate interface, i.e. the input and output pins 
that it exposes to the outside world.  The gate implementation diagram is relevant only to the gate 
designer, whereas the gate interface is the right level of detail for other designers who wish to use 
the gate as an abstract off-the-shelf component, without paying attention to its internal structure.   
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Let us consider another logic design example -- that of a Xor gate .   As discussed before, Xor(a,b) 
is 1 exactly when either a is 1 and b is 0, or when a is 0 and b is 1.  Said otherwise, 
Xor(a,b)=Or(And(a,Not(b)),And(Not(a),b)).  This definition leads to the logic design shown in 
Diagram 5. 
 

Xor
a

b
out

0     0       0
0     1       1
1     0       1
1     1       0

a     b      out

 

And

And

Or out

a

b

 
 

DIAGRAM 5: The Xor gate and a possible Xor implementation  
  
We conclude this section with an important observation about the difference between interface 
and implementation. The gate interface is unique: there is only one way to describe it, and this is 
normally done using a truth table or some verbal specification.  This interface, however, can be 
realized using many different implementations, and some of the resulting gate architectures will 
be better than others in terms of cost, speed, and simplicity.  For example, the Xor function can be 
implemented using 3, rather than 5, internal gates.  Thus, from a functional standpoint, the 
fundamental requirement of logic design is that the gate implementation will realize the stated 
interface, in one way or another.  From an efficiency standpoint, the general rule is to try to do 
more with less, i.e. use as few gates as possible.  
 
To sum up, the art of logic design can be described as follows: given a gate specification, find an 
efficient way to implement it using other gates that were already implemented.  This, in a 
nutshell, is what the rest of the chapter is concerned with.  
 
Actual Hardware Construction 
 
Having described the logic of designing complex gates by composing more primitive ones, we 
now turn to describe how composite gates can be actually built.  Let us start with an intentionally 
naïve example. 
 
Suppose we open a chip production shop in our home garage.  Our first contract is to build a 
hundred Xor gates.  Using the order's down payment, we purchase a soldering gun, a roll of 
copper wire, and three bins labeled "And gates", "Or gates", and "Not gates", each containing 
many identical copies of these elementary logic gates.  Each of these gates is sealed in a plastic 
casing that exposes some input and output pins, as well as a power supply plug. To get started, 
we pin the Xor gate diagram from Diagram 5 to our garage wall, and proceed to implement it 
using our hardware.  First, we take two And gates, two Not gates, and one Or gate, and mount 
them on a board in more or less the same layout specified in the diagram. Next, we connect the 
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chips to each other by running copper wires among them, and soldering the wire ends to the 
respective input/output pins.  Now, if we follow the gate diagram carefully, we will end up 
having three exposed wire ends. We then solder a pin to each one of these wire ends, seal the 
entire device (except for the three pins) in a plastic casing, and label it "Xor".  We can repeat this 
assembly process many times over.  At the end of the day, we can store all the chips that we've 
built in a new bin, and label it "Xor gates".  If we (or other people) will be asked to construct 
some other chips in the future, we'll be able to use these Xor gates as elementary building blocks, 
just like we used the And, Or, and Not gates before.   
 
As the reader has probably sensed, the garage approach to chip production leaves much to be 
desired. For starters, there is no guarantee that the given chip diagram is correct.  Although we 
can prove correctness in simple cases like Xor, we cannot do so in many realistically complex 
chips. Thus, we must settle for empirical testing: build the chip, connect it to a power supply, 
activate and deactivate the input pins in various configurations, and hope that the chip outputs 
will agree with its specifications. If the chip will fail to deliver the desired outputs, we will have 
to tinker its physical structure – a rather messy affair.  Further, even if we will come up with the 
right design, replicating the chip assembly process many times over will be a time-consuming 
and error prone affair. There must be a better way! 
 
Hardware Description Language 
 
Indeed there is. Today, hardware designers no longer build anything with their bare hands.  
Instead, they plan and optimize the chip architecture on a computer workstation, using a 
structured modeling formalism called Hardware Description Language, or HDL (also known as 
VHDL, where V stands for Virtual). The designer specifies the chip structure by writing an HDL 
program, which is then subjected to a rigorous battery of tests.  These tests are carried out 
virtually, using computer simulation.  That is to say, a special software tool, called hardware 
simulator, takes the HDL program as input, and builds an image of the implied chip in memory.  
Next, the designer can instruct the simulator to test the virtual chip on various sets of inputs, 
generating simulated chip outputs. The outputs can then be compared to the desired results, as 
mandated by the person who ordered the chip built.  
 
In addition to testing the chip's correctness, the hardware designer will typically be interested in a 
variety of parameters such as speed of computation, energy consumption, and the overall cost 
implied by the chip design (and this is perhaps the right place to point out that a Xor chip can be 
built with 3 elementary gates rather than 5, as we have done before).  All these parameters can be 
simulated and quantified by the hardware simulator, helping the designer optimize the design 
until the simulated chip delivers desired performance levels.   
 
Thus, using HDL, one can completely plan, debug and optimize the entire chip before a single 
penny is spent on actual production.  When the HDL program is deemed complete, i.e. when the 
performance of the simulated chip satisfies the client who ordered it, the HDL program can 
become the blueprint from which many copies of the physical chip can be stamped in silicon.  
This final step in the chip life cycle -- from an optimized HDL program to mass production – is 
typically outsourced to companies that specialize in chip fabrication. 
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Example: Building a Xor Gate:  By definition, Xor returns true when its two inputs have 
opposing values, i.e. Xor(a,b)=Or(And(a,Not(b)),And(Not(a),b)). This logic can be expressed 
either graphically, as a gate diagram, or textually, as an HDL program (Fig. 10).  The latter 
program is written in the HDL variant used throughout this book, which is completely defined in 
appendix A. 
 

 

b

a

b

a

a

AND

AND

OR out

a

b

in

in

notb

nota

w1

w2

out

out

out

out

b
out

 

HDL program Test script Output file 
 
// Xor (exclusive or) gate 
// If a<>b out=1 else out=0 
CHIP Xor { 
   IN a,b; 
   OUT out; 
   PARTS: 
   Not(in=a,out=nota); 
   Not(in=b,out=notb); 
   And(a=a,b=notb,out=w1); 
   And(a=nota,b=b,out=w2); 
   Or(a=w1,b=w2,out=out); 
} 

 
load Xor.hdl, 
output-list a,b,out; 
set a 0, set b 0, 
eval, output; 
set a 0, set b 1, 
eval, output; 
set a 1, set b 0, 
eval, output; 
set a 1, set b 1; 
eval, output; 

 
a | b | out
-----------
0 | 0 | 0 
0 | 1 | 1 
1 | 0 | 1 
1 | 1 | 0 

 

 
FIGURE 10: HDL implementation of a Xor gate.  Following a convention used in 
this book, the shown files are named Xor.hdl, Xor.tst , and Xor.out.  

 
Explanation: An HDL definition of a chip consists of a header section and a parts section.  The 
header section describes the chip interface, or signature, which specifies the chip name and the 
names of its input and output pins.  The parts section describes the names and topology of all the 
lower-level chips from which this chip is constructed.  Each part is represented by a statement 
that specifies the part name and the way it is connected to other parts in the design.  Note that in 
order to write such statements legibly, the HDL programmer must have a complete description of 
the interfaces of the underlying parts.  For example, Fig. 10 implies that the input and output pins 
of the Not gate are labeled in and out, and those of And and Or are labeled a,b and out.  Without 
knowing this API-based convention, it would be impossible to plug these chip parts into the 
present code. 
 
Inter-part connections are described by creating and connecting internal pins, as needed. For 
example, consider the bottom of the gate diagram, where the output of a Not gate is piped into the 
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input of a subsequent And gate. The HDL code describes this connection by the pair of statements 
Not(...,out=nota) and And(a=nota,...). The first statement creates an internal pin (wire) 
named nota, and then feeds out into it.  The second statement feeds the value of the nota pin into 
the a input of an And gate.  Note that pins may have an unlimited fan-out.  For example, the input 
a is simultaneously fed into both an And gate and a Not gate.  In gate diagrams, multiple 
connections are described using forks.  In HDL, the existence of forks is implied by the code. 
 
Testing: Rigorous quality assurance requires that chips will be tested in a specific, replicable, and 
well-documented fashion.  With that in mind, hardware simulators are usually able to run test 
scripts, written in some scripting language.  For example, the test script in Fig. 10 is written in the 
scripting language understood by the hardware simulator supplied with this book. Both the 
simulator and the scripting language are described fully in appendix B.   
 
Let us give a brief description of the test script from Fig. 10. The first two lines of the test script 
instruct the simulator to load the Xor.hdl program and get ready to print the current values of 
selected variables. Next, the script lists a series of testing scenarios, designed to simulate the 
various contingencies under which the Xor gate will have to operate in "real life" situations. In 
each scenario, the script instructs the simulator to bind the gate inputs to certain data values, 
compute the gate output, and record the test results in a designated output file.  In the case of 
simple gates like Xor, one can write an exhaustive test script that enumerates all the possible input 
values of the chip. The resulting output file (right side of Fig. 10) can then be viewed as a 
complete empirical proof that the chip is well-defined.  The luxury of such certitude is not 
feasible in more complex chips, as we will see later. 
 
 
Hardware Simulation 
 
Although HDL is a hardware construction language, the process of writing and debugging an 
HDL program is quite similar to software development.  The main difference is that instead of 
writing code in a language like Java we write it in HDL, and rather than using a compiler and a 
virtual machine to translate and test it, we use a hardware simulator instead. The hardware 
simulator is a computer program that knows how to parse and interpret HDL code, turn it into an 
executable representation, and test it according to the specifications of a given test script. There 
exist many commercial hardware simulators in the market, and these vary greatly in terms of 
cost, complexity, and ease of use.  Together with this book we provide a simple (and free!) 
hardware simulator which is sufficiently powerful to illustrate all the key elements of the 
hardware design process.  This simulator is all you need in order to build, test, and integrate all 
the chips presented in the book, leading to the construction of a powerful general-purpose 
computer.  Fig. 11 illustrates a typical chip simulation session. 
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FIGURE 11: Chip Simulation. A screen shot of simulating a Xor chip on the hardware simulator.  
The simulator state is shown just after the test script stopped running.  The pin values correspond 
to the last simulation step ( a ). Note that the output file generated by the simulation is 
consistent with the Xor truth table, indicating that the HDL program provides a correct 
implementation of Xor.  The compare file, not shown in the figure, has exactly the same structure 
and contents as that of the output file.  The fact that the two files agree with each other is evident 
from the status message displayed at the bottom left of the screen.  

1== b

 
  
2. Specification 
 
This section specifies a typical set of gates, each designed to carry out a common Boolean 
operation. These gates will be used in the next chapters to construct the full architecture of a 
typical modern computer.  Our starting point is a single primitive Nand gate, from which all other 
gates will be derived recursively.  Importantly, we provide only the gates specifications, or 
interfaces, delaying implementation issues to a subsequent section.  Readers who wish to 
construct the specified gates in HDL (Hardware Description Language) are welcome to do so, 
after reading Appendix A.  The gates can be built and simulated on your home computer, using 
the hardware simulator supplied with the book. 
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The Nand gate 
 
The starting point of our computer architecture is the Nand gate, from which all other gates and 
chips are built.  The Nand gate is designed to compute the following Boolean function: 
 

a b Nand(a,b)
0 0 1 
0 1 1 
1 0 1 
1 1 0 

 
Throughout this section, we use "chip API boxes" to specify chips. For each chip, the API 
specifies the chip name, the names of its input and output pins, the function or operation that the 
chip effects, and an optional comment.   
 

Chip name: Nand 

Inputs:    a,b 

Outputs:   out 

Function: If a=b=1 then out=0 else out=1 

Comment: This gate is considered primitive and 
thus there is no need to implement it. 

 
 
Basic Logic Gates 
 
Some of the logic gates presented below are typically referred to as "elementary" or "basic."  At 
the same time, every one of them can be composed from Nand gates alone.  Therefore, they need 
not be viewed as primitive. 
 
Not: The single-input Not gate, also known as "converter", converts its input from 0 to 1 and 
vice versa.  The gate API is as follows: 
 

Chip name: Not 

Inputs:    in 

Outputs:   out 

Function: if in=0 then out=1 else out=0. 

 
 
And:  The And function returns 1 when both its inputs are 1, and 0 otherwise. 
 

Chip name: And 

Inputs:    a,b 

Outputs:   out 

Function: if a=b=1 then out=1 else out=0. 
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Or: The Or function returns 1 when at least one of its inputs is 1, and 0 otherwise. 
 

Chip name: Or 

Inputs:    a,b 

Outputs:   out 

Function: if a=b=0 then out=0 else out=1.  

 
 
Xor: The Xor function, also known as "exclusive or," returns 1 when its two inputs have 
opposing values, and 0 otherwise. 
 

Chip name: Xor 

Inputs:    a,b 

Outputs:   out 

Function: if a≠b then out=1 else out=0. 

 
 
Multiplexor: A multiplexor is a 3-input gate that uses one of the inputs, called "selection bit", to 
select and output one of the other two inputs, called "data bits".  Although a better name for this 
device could have been selector, the name multiplexor is commonly used since a similar device is 
used in telecommunications systems to combine (multiplex) several input signals over a single 
output wire.   
 

a b sel out   sel out  
0 0 0 0   0 a  

0 1 0 0   1 b  

1 0 0 1 
1 1 0 1 
0 0 1 0 
0 1 1 1 
1 0 1 0 

1 1 1 1 

 

a

b

sel

outMux

 
 
 

Chip name: Mux 

Inputs:    a,b,sel 

Outputs:   out 

Function: If sel=0 then out=a else out=b. 

 
 

DIAGRAM 6: Multiplexor.  The table at the top right is an abbreviated version 
of the truth table on the left. 
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Demultiplexor: A demultiplexor performs the opposite function of a multiplexor: it takes a 
single input and channels it to one of two possible output wires according to a selector input that 
specifies which input to chose.  
 
 

sel a b 

0 in 0 

1 0 in 
   

a

b

sel

in DMux

 
 

Chip name: DMux 

Inputs:    in,sel 

Outputs:   a,b 

Function: If sel=0 then {a=in, b=0} else {a=0, b=in} 

 
DIAGRAM 7: Demultiplexor. 

 
 
Multi-bit versions of basic gates 
 
Computer hardware is typically designed to operate on multi-bit arrays called "buses."  For 
example, a basic requirement of a 32-bit computer is to be able to compute (bit-wise) an And 
function on two given 32-bit busses.  To implement this operation, we can build an array of 32 
binary And gates, each operating separately on a pair of bits.  In order to enclose all this logic in 
one package, we can encapsulate the gates array in a single chip interface consisting of two 32-bit 
input busses and one 32-bit output bus. 
 
This section describes a typical set of multi-bit logic gates, as needed for the construction of a 16-
bit computer. We note in passing that the architecture of n-bit logic gates is basically the same 
irrespective of n's value. 
 
When referring to individual bits in a bus, it is common to use an array syntax.  For example, to 
refer to individual bits in a 16-bit bus named data, we use the notation data[0], 
data[1],…,data[15].   
 
Multi-bit Not: An n-bit Not gate applies the Boolean operation Not to every one of the bits in its 
n-bit input bus. 
 

Chip name: Not16 

Inputs:    in[16] 

Outputs:   out[16] 

Function: for i=0..15 out[i]=Not(in[i]). 
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Multi-bit And: An n-bit And gate applies the Boolean operation And to every one of the n bit-
pairs drawn from its two n-bit input busses: 
 

Chip name: And16 

Inputs:    a[16],b[16] 

Outputs:   out[16] 

Function: For i=0..15 out[i]=And(a[i],b[i]). 

 
 
Multi-Bit Or: An n-bit Or gate applies the Boolean operation Or to every one of the n bit-pairs 
drawn from its two n-bit input busses: 
 

Chip name: Or16 

Inputs:    a[16],b[16] 

Outputs:   out[16] 

Function: For i=0..15 out[i]=Or(a[i],b[i]). 

 
 
Multi-bit multiplexor: An n-bit multiplexor is exactly the same as the binary multiplexor 
described in Diagram 6, only the two inputs are each n-bit wide; the selector is a single bit.   
 

Chip name: Mux16 

Inputs:    a[16],b[16],sel 

Outputs:   out 

Function: if sel=0 then for i=0..15 out[i]=a[i] 
else for i=0..15 out[i]=b[i]. 

 

 
 
Multi-Way Versions of Basic Gates 
 
Many two-way logic gates that accept two inputs have natural generalization to multi-way 
variants that accept an arbitrary number of inputs.  This section describes a set of multi-way gates 
that will be used subsequently in various chips in our computer architecture.  Similar 
generalizations can be developed for other architectures, as needed. 
 
Multi-way Or: An n-way Or gate outputs 1 when at least one of its bit inputs is 1, and 0 
otherwise. 
 

Chip name: Or8Way 

Inputs:    in[8] 

Outputs:   out 

Function: out=Or(in[0],in[1],...,in[7]). 

 
 

 



Chapter 1: Boolean Logic                                                                                                                         15    
              
Multi-way / Multi-Bit Multiplexor: An m-way n-bit multiplexor is a device that selects one of 
m n-bit input busses and outputs it to a single n-bit output bus.  The selection is specified by a set 
of k control (input) bits, where .  Diagram 8 depicts a typical example. mk 2log=
 

   

sel[1] sel[0] out 

0 0 a 

0 1 b 

1 0 c 

1 1 d 
   

 

a

out
b
c

4-way
Mux

sel[0]sel[1]

d a,b,c,d and
out are each
16-bit wide

 
 

DIAGRAM 8: 4-way multiplexor.  The width of the input and output busses may vary. 
 
The computer platform that we develop in this book requires two variations of this chip: a 4-way 
16-bit multiplexor, and an 8-way 16-bit multiplexor: 
 

Chip name: Mux4Way16 

Inputs:    a[16],b[16],c[16],d[16],sel[2] 

Outputs:   out[16] 

Function: if sel=00 then out=a else if sel=01 then out=b else 

if sel=10 then out=c else if sel=11 then out=d 

Comment: The assignment operations mentioned above are all 16-bit. 
For example, "out=a" means "for i=0..15 out[i]=a[i]".  

 
 

Chip name: Mux8Way16 

Inputs:    a[16],b[16],c[16],d[16],e[16],f[16],g[16],h[16],sel[3] 

Outputs:   out[16] 

Function: if sel=000 then out=a else if sel=001 then out=b else 

if sel=010 out=c ... else if sel=111 then out=h 

Comment: The assignment operations mentioned above are all 16-bit. 
For example, "out=a" means "for i=0..15 out[i]=a[i]".  
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Multi-way / Multi-Bit Demultiplexor: An m-way n-bit demultiplexor is a device that channels 
a single n-bit input into one of m possible n-bit outputs.  The selection is specified by a set of k 
control (input) bits, where k . m2log=
 

      

sel[1] sel[0] a b c d 

0 0 in 0 0 0 

0 1 0 in 0 0 

1 0 0 0 in 0 

1 1 0 0 0 in 
      

 

a

in
4-way
Dmux

b
c
d

sel[0]sel[1]

 

 
DIAGRAM 9: 4-way demultiplexor. 

 
 
The computer platform that we will build requires two variations of this chip: a 4-way 1-bit 
demultiplexor, and an 8-way 1-bit multiplexor: 
 
 

Chip name: DMux4Way 

Inputs:    in,sel[2] 

Outputs:   a,b,c,d 

Function: if sel=00 then      {a=in, b=c=d=0}  

else if sel=01 then {b=in, a=c=d=0}  

else if sel=10 then {c=in, a=b=d=0} 

else if sel=11 then {d=in, a=b=c=0}.  

 
 
 

Chip name: DMux8Way 

Inputs:    in,sel[3] 

Outputs:   a,b,c,d,e,f,g,h 

Function: if sel=000 then      {a=in, b=c=d=e=f=g=h=0} 

else if sel=001 then {b=in, a=c=d=e=f=g=h=0}  

else if sel=010  ...  

... 

else if sel=111 then {h=in, a=b=c=d=e=f=g=0}. 
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3. Implementation 
 
Similar to the role of axioms in mathematics, primitive gates provide the elementary building 
blocks from which everything else can be built.  Operationally, primitive gates have an "off-the-
shelf" implementation which is supplied externally.  Thus, they can be used in the construction of 
other gates and chips without worrying about their internal design.  In the computer architecture 
that we are now beginning to build, we have chosen to base all the hardware on one primitive 
gate only: Nand.  We now turn to outline the first stage of this bottom-up hardware construction 
project, one gate at a time.  Our implementation guidelines are intentionally partial, since we 
want you to discover the actual gate architectures yourself.  Importantly, note that each gate can 
be implemented in more than one way; the simpler the implementation, the better. 
  
Not: The implementation of a unary Not gate from a binary Nand gate is rather simple.  Tip: 
think positive. 
 
And:  Once again, the gate implementation is rather simple.  Tip: think double-negative. 
 
Or/Xor: Using some simple Boolean manipulations, these functions can be defined in terms of 
some of the Boolean functions implemented above.  Thus, the respective gates can be built using 
previously-built gates. 
 
Multiplexor / Demultiplexor: Likewise, can be built using previously-built gates. 
 
Multi-bit Not/And/Or Gates: Since we already know how to implement the elementary versions 
of these gates, the implementation of their n-ary versions is simply a matter of constructing arrays 
of n elementary gates, having each gate operate separately on its bit inputs.  This implementation 
task is rather boring, but it will carry its weight when these multi-bit gates will be used in the 
overall computer architecture, as described in subsequent chapters.    
 
Multi-bit multiplexor: The implementation of an n-ary multiplexor is simply a matter of feeding 
the same selection bit to every one of n binary multiplexors.  Again, a boring but useful task. 
 
Multi-way Gates: Implementation tip: think forks.  
 
 
4. Perspective 
 
This chapter described the first steps taken in an applied digital design project.  In the next 
chapter we will build more complicated functionality using the gates built here.  Although we 
have chosen to use Nand as our basic building block, other approaches are possible.  For 
example, one can build a complete computer platform using Nor gates alone, or, alternatively, a 
combination of And, Or, and Not gates. These constructive approaches to logic design are 
theoretically equivalent, just like all of geometry (and any other mathematical field) can be 
founded on different sets of axioms as alternative points of departure. Detailed treatments of 
digital design (also called logic design) techniques can be found in standard undergraduate 
textbooks like [Hennessy & Patterson, Appendix B] and [Mano, Chapters 2 and 3]. 

 



Chapter 1: Boolean Logic                                                                                                                         18    
              
Throughout the chapter, we paid no attention to efficiency considerations, e.g. the number of 
elementary gates used in constructing a composite gate, or the number of wire cross-overs 
implied by the design.  Such considerations are critically important in practice, and a great deal of 
computer science and electrical engineering expertise focuses on them. Another issue we did not 
address at all is the physical implementation of gates and chips using the laws of physics, e.g. the 
role of transistors embedded in silicon.  There are of course several such implementations, each 
having its own characteristic (speed, power requirements, production cost, etc.)  Brief discussions 
of these issues appear in the textbooks mentioned above.  More comprehensive treatments of the 
technological implementations of basic gates usually require some background in electronics and 
physics and can be found in advanced textbooks like [Rabaey et al]. 
 
5. Build It 
 
Objective: Implement the 15 gates presented in the chapter.  The only building blocks that you 
can use are primitive Nand gates and the composite gates that you will gradually build on top of 
them. 
 
Resources: The main tool that you will use in this project is the hardware simulator supplied with 
the book.  All the gates should be implemented in the HDL language specified in appendix A. 
 
In order to streamline and manage this construction project, we supply 45 files, as follows.  For 
each one of the 15 gates mentioned in the chapter, we provide a skeletal .hdl program with a 
missing implementation part.  In addition, for each gate we provide a .tst script file that tells the 
hardware simulator how to test it, along with the correct output file that this script should 
generate, called .cmp or "compare file".  All these files are packed in one file named project1.zip.  
Your job is to complete the missing implementation parts of all the .hdl programs. 
 
Contract: When loaded into the hardware simulator, your chip design (modified .hdl program), 
tested on the supplied .tst file, should deliver the behavior specified in the supplied .cmp file.  If 
that is not the case, the simulator will let you know. 
 
Tip: As a rule, one should implement the gates in the order in which they are presented in the 
book.  However, since the simulator features built-in versions of all the chips described in the 
book, lack of .hdl versions of one gate or another should not delay the construction of more 
advanced chips that rely on them. 
 
For example, consider the skeletal Mux.hdl program provided with this project.  Suppose that 
for one reason or another you did not complete the implementation of this program, but you still 
want to use the Mux chip as an internal part in other chip designs. This is not a problem, thanks to 
the following convention.  If our simulator fails to find a Mux.hdl file in the current directory, it 
automatically invokes the built-in chip implementation of Mux, which is pre-supplied with the 
simulator.  This built-in Mux implementation -- a Java class stored in the simulator's BuiltIn 
directory -- has the same interface and functionality as those of the Mux chip described in the 
book. Thus, if you want the simulator to ignore one or more of your chip implementations, 
simply move the corresponding .hdl files out from the current directory. 
 

 

http://www1.idc.ac.il/digitalCore/tools/index.html
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Steps:  We recommend proceeding in the following order: 
 
0. Assuming that you’ve installed the book’s Software Suite: 
1. Read Chapter 1 and Appendix A; 
2. Go through the Hardware Simulator Tutorial; 
3. Create a directory called project1 on your computer; 
4. Download the project1.zip file and extract it to your project1 directory; 
5. Build and simulate all the chips. 
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2. Boolean Arithmetic1 

 
Counting is the religion of this generation, its hope and salvation.  

(Gertrude Stein, American writer, 1874-1946) 
 

In this chapter we build the Boolean circuits that represent numbers and perform arithmetic 
operations on them.  Our starting point is the set of logic gates we built in the last chapter, and 
our ending point is a fully functional Arithmetic Logical Unit.  The ALU is the centerpiece chip 
that executes all the arithmetic and logical operations performed by the computer. 
 
1. Background 
 
Binary Numbers: Unlike the decimal system, which is founded on base 10, the binary system is 
founded on base 2.  When we are given a certain binary pattern, say 10011, and we are told that 
this pattern is supposed to represent an integer number, the decimal value of this number is 
computed by convention as follows: 
 

192121202021)10011( 01234 =⋅+⋅+⋅+⋅+⋅=two  (1) 

 
In general, let  be a string of digits. The value of x in base b, denoted ( , is defined 
as follows: 

01...xxxx nn −= bx)

i
n

i
ibnn bxxxx ⋅= ∑

=
−

0
01 )...(  

 
(2) 

 
The reader can verify that in the case of ( , rule (2) reduces to calculation (1).    two)10011
 
The result of calculation (1) happens to be 19.  Thus, when we press the keyboard keys labeled 
“1”, “9” and ENTER while running, say, a spreadsheet program, what ends up in some register in 
the computer is the binary code 10011.  More precisely, if the computer happens to be a 32-bit 
machine, say, what gets stored in the register is the bit pattern 
00000000000000000000000000010011.   
 
Binary addition: A pair of binary numbers can be added digit-by-digit from right to left, 
according to the same elementary school method used in decimal addition.   First, we add the two 
right-most digits, also called the least significant bits of the two binary numbers.  Next, we add 
the resulting carry bit (which is either 0 or 1) to the sum of the next pair of bits up the 
significance ladder. We continue the process until the two most significant bits are added.  If the 
last bit-wise addition generates a carry of 1, we can report overflow; otherwise, the addition 
completes successfully. 

                                                 
1 From The Elements of Computing Systems, Nisan & Schocken, MIT Press, forthcoming in 2003, www.idc.ac.il/csd 
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0 0 0 1  (carry) 1 1 1 1  
 1 0 0 1 x  1 0 1 1 
+ 0 1 0 1 y + 0 1 1 1 
0 1 1 1 0 yx +  1 0 0 1 0 

   no overflow       overflow 
 

FIGURE 1: Two examples of binary addition (assuming 4-bit registers).  In the 
case of overflow, the computation can be rendered invalid. 

 
We see that computer hardware for binary addition must be able to calculate the sum of three bits 
(pair of bits plus carry bit) and pass the carry bit from the addition of one pair of bits to the 
addition of the next significant pair of bits. 

Signed binary numbers: A binary system with n digits can code  different bit patterns.  Let us 
call this set of patterns the system's "code space". To represent signed numbers in binary code, a 
natural solution is to split this space into two equal subsets.  One subset of codes is assigned to 
represent positive numbers, and the other negative numbers.  The exact coding scheme should be 
chosen in such a way that, ideally, the introduction of signed numbers would complicate the 
hardware implementation as little as possible.   

n2

 
This challenge has led to the development of several coding schemes for representing signed 
numbers in binary code.  The method used today by almost all modern computers is called the 2’s 
complement method, also known as radix complement.  In a binary system with n digits, the 2’s 
complement of the number x is defined as follows: 
 



 ≠−

=
otherwise
xifx

x
n

0
02

 
 
(3) 

 
For example, in a 5-bit binary system, the 2’s complement representation of -2 or 
“minus ( ” is 2two)00010 tententwo )2()32()00010(5 −=− twoten )11110()30( == .  To check the calculation, 
the reader can verify that ( two)00000twotwo ()11110()00010 =+ .  Note that in the latter computation, 
the sum is actually ( , but since we are dealing with a 5-bit binary system, the left-most 
6

two)100000
th bit is lost.  As a rule, when the 2's complement method is applied to n-bit numbers, )( xx −+  

always sums up to  (i.e. 1 followed by n 0's).  This property gives the method its name.  Table 
2 illustrates a 4-bit binary system with the 2's complement method. 

n2
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Positive 
Numbers 

Negative 
Numbers 

0 0000   
1 0001 1111 -1 
2 0010 1110 -2 
3 0011 1101 -3 
4 0100 1100 -4 
5 0101 1011 -5 
6 0110 1010 -6 
7 0111 1001 -7 
  1000 -8 

 
TABLE 2: the 2’s complement representation of integer 
numbers, assuming a 4-bit binary system.   

An inspection of Table 2 suggests that an n-bit binary system with 2’s complement representation 
has the following properties: 

 The system can code a total of  signed numbers, of which the maximal and 
minimal numbers are  and 

n2
212 1 −−n 1−− n , respectively; 

 The codes of all positive numbers begin with a "0"; 

 The codes of all negative numbers begin with a "1"; 

 To obtain the code of –x from the code of x, leave all the trailing (least significant) 
0’s and the first least significant 1 intact, then flip all the remaining bits (convert 0’s 
to 1’s and vice versa).  An equivalent shortcut, which is easier to implement in 
hardware, is to flip all the bits of x and add 1 to the result.    

A particularly attractive feature of this representation is that addition of any two numbers in 2’s 
complement is exactly identical to addition of positive numbers.  Consider, for example, the 
addition operation (-2) + (-3): using 2’s complement (in a 4-bit representation) we have to add, in 
binary, (1110)two + (1101)two.  Without paying any attention to which numbers (positive or 
negative) these codes represent, bit-wise addition will yield 1011 (after throwing away the 5’th 
overflow bit).  Indeed, this is the 2’s complement representation of (-5).   

In short, we see that we are able to perform addition of any two signed numbers without requiring 
any special hardware beyond that needed for simple bit-wise addition.  What about subtraction?  
Recall that in the 2’s complement method, the arithmetic negation of a signed number x, i.e. 
computing –x, is achieved by negating all the bits of x and adding 1 to the result.  Thus 
subtraction can be handled by )( yxyx −+=− . Once again, hardware complexity is kept to a 
minimum. 

The material implications of these theoretical results are significant. Basically, they imply that a 
single chip, called Arithmetic Logical Unit, can be used to encapsulate all the basic arithmetic and 
logical operators performed in hardware. We now turn to specify one such ALU, beginning with 
the specification of an adder chip. 
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2. Specification 
 
Adders 
 
We present a hierarchy of three adders, leading to a multi-bit adder chip:  
 
 Half-adder: designed to add 2 bits; 
 Full-adder: designed to add 3 bits; 
 Adder: designed to add two n-bit numbers. 

 
We also present a special-purpose adder, called incrementer, designed to add 1 to a given 
number. 
 
 
Half Adder: The first step on our way to adding binary numbers is to be able to add two bits.  
This task requires the handling of four possible cases: 

 
0 + 0 =  00 
0 + 1 =  01 
1 + 0 =  01 
1 + 1 =  10 

 
We will now present a chip, called half-adder, that implements this addition operation.  The least 
significant bit of the addition is called sum, and the most significant bit is called carry.   
 
 

Inputs Outputs 
a b carry sum 
0 0 0 0 
0 1 0 1 
1 0 0 1 
1 1 1 0 
    

 

h alf
 ad d er

a sum

b carry

 

 
Chip name: HalfAdder 
Inputs:    a, b 
Outputs:   sum, carry 
Function: sum   = LSB of a+b 

carry = MSB of a+b 
 

DIAGRAM 3:  Half Adder, designed to add 2 bits. 
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Full Adder: Now that we know how to add 2 bits, we present a full-adder chip, designed to add 
3 bits. Like the half-adder case, the full-adder chip produces two outputs: the least significant bit 
of the addition, and the carry bit. 
 

  

a b c carry sum 
0 0 0 0 0 
0 0 1 0 1 
0 1 0 0 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 1 0 
1 1 0 1 0 
1 1 1 1 1 

 
 
 

fu ll
 ad d er

a
s um

b
carry

c

 

 
Chip name: FullAdder 
Inputs:    a, b, c 
Outputs:   sum, carry 
Function: sum = LSB of a+b+c  

carry = MSB of a+b+c 
 

DIAGRAM 4: Full Adder, designed to add 3 bits.  
 
 
Adder: Memory and register chips represent integer numbers by n-bit patterns, n being 16, 32, 
64, etc. – depending on the computer platform. The chip whose job is to add such numbers is 
called a multi-bit adder, or simply adder.  We present a 16-bit adder, noting that our diagrams 
and specifications scale up as-is to any n-bit system. 
 

      
… 1 0 1 1   a 
… 0 0 1 0   b 

… 1 1 0 1   out 

out
a

16

1 6 -b it
ad d e r16

16

+

 
Chip name: Add16 
Inputs:    a[16],
Outputs:   out[16
Function: out=a+
Comment: intege

overfl
 

DIAGRAM 5: 16-bit add
of two 4-bit numbers.  n-

 

 

b

 

b[16] 
] 
b 
r 2's complement addition. 
ow is neither detected nor handled.  

er.  The example (top left) illustrates the addition 
bit addition for any n is “more of the same.” 
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Incrementer: It is convenient to have a special purpose chip dedicated to adding the constant 1 
to a given number.  Here is the API of a 16-bit incrementer: 
 

Chip name: Inc16 
Inputs:    in[16] 
Outputs:   out[16] 
Function: out=in+1 
Comment: integer 2's complement addition. 

overflow is neither detected nor handled.  
 
 
 
The Arithmetic Logic Unit (ALU) 
 
The specifications of the adder chips presented so far were generic, meaning that they hold for 
every computer.  We now turn to discuss the specific 16-bit ALU of the Hack platform.  This 
chip is designed to compute a fixed set of functions out= (x,y) where x and y are the chip's two 
16-bit inputs, out is the chip's 16-bit output, and 

if

if  is an arithmetic or logical function selected 
from a fixed repertoire of possible functions.  We instruct the Hack ALU which function to 
compute by setting a set of six input bits, called control bits, to certain binary values.  The exact 
specification of which function the ALU computes given each setting of the control bits is given 
in Diagram 6, using pseudo-code. 
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zx no

zr

nx zy ny f

ALU

ng

16 bits

16 bits

x

y 16 bits
out

  
Chip name: ALU 
Inputs:    x[16],y[16],    // data inputs 

zx,             // zero the x input 
nx,             // negate the x input 
zy,             // zero the y input 
ny,             // negate the y input 
f,              // function code: 1 for Add, 0 for And 
no              // negate the out output 

Outputs:   out[16],        // data output 
zr,             // status flag, true when the ALU output=0  
ng              // status flag, true when the ALU output<0 

Function: if zx then x=0        // 16-bit zero constant 
if nx then x=~x       // bit-wise negation 
if zy then y=0        // 16-bit zero constant 
if ny then y=~y       // bit-wise negation 
if f then out=x+y     // integer 2's complement addition 
     else out=x&y     // bit-wise And 
if no then out=~out   // bit-wise negation 
if out=0 then zr=1 else zr=0  // 16-bit equality comparison 
if out<0 then ng=1 else ng=0  // 2's-complement comparison  

Comment: overflow is neither detected nor handled. 
 
 

DIAGRAM 6:  The ALU of the Hack platform: interface and API.  The ALU operation (the 
function computed on x and y) is determined by the six control bits.  The ALU sets the output 
bits zr and ng to 1 when the output out is zero or negative, respectively. 

 
Note that each one of the six control bits instructs the ALU to carry out a certain operation.  
Taken together, the combined effects of these operations cause the ALU to compute a variety of 
useful functions.  Since the ALU is controlled by six control bits, it can potentially compute 

 different functions. 18 of these functions are documented in Table 7.  6426 =
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these bits instruct how to 
 pre-set the x input 

these bits instruct how to 
 pre-set the y input 

this bit selects 
betw. + / And 

this bit inst. how 
to post-set out 

resulting 
ALU output 

zx nx zy ny f no out= 

If zx then 
x=0 

If nx then 
x=~x 

If zy then 
y=0 

If ny then 
y=~y 

If f then 
out=x+y else 
out=x And y 

If no then  
out=~out f(x,y)=  

1 0 1 0 1 0 0 
1 1 1 1 1 1 1 
1 1 1 0 1 0 -1 
0 0 1 1 0 0 x 
1 1 0 0 0 0 y 
0 0 1 1 0 1 ~x 
1 1 0 0 0 1 ~y 
0 0 1 1 1 1 -x 
1 1 0 0 1 1 -y 
0 1 1 1 1 1 x+1 
1 1 0 1 1 1 y+1 
0 0 1 1 1 0 x-1 
1 1 0 0 1 0 y-1 
0 0 0 0 1 0 x+y 
0 1 0 0 1 1 x-y 
0 0 0 1 1 1 y-x 
0 0 0 0 0 0 x&y 
0 1 0 1 0 1 x|y 

 
TABLE 7:  The ALU truth table. Taken together, the binary operations coded by the 
first six columns (input control bits) in each row affect the overall function listed in 
the right column of that row. (We use the symbols ~, &, and | to represent the 
operators Not, And, and Or, respectively, performed bit-wise.).  The complete ALU 
truth table consists of 64 rows, of which only the 18 presented here are of interest. 

 
We see that programming the ALU to compute a certain function f(x,y) is done by setting the six 
control bits to the code of the desired function.  From this point on, the internal ALU logic 
specified in Diagram 6 should cause the ALU to output the value f(x,y) specified in Table 7.  This 
does not happen miraculously -- it’s the result of careful design. 
 
For example, let us consider the 12th row of table 7, where the ALU is instructed to compute the 
function x-1.  The zx and nx bits are 0, so the x input is neither zeroed nor negated.  The zy and 
ny bits are 1, so the y input is first zeroed, and then negated bit-wise.  Bit-wise negation of zero, 
(000...00)two, gives (111…11)two, which is the 2’s complement code of -1.  Thus the ALU inputs 
end up being x and -1.   Since the f-bit is 1, the selected operation is arithmetic addition, causing 
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the ALU to calculate x+(-1).  Finally, since the no bit is 0, the output is not negated but rather left 
as is.  To conclude, the ALU ends up computing x-1, which was our goal.   
 
Does the ALU logic described in Table 6 compute every one of the other 17 functions listed in 
the right column of Table 7? To verify that this is indeed the case, the reader is advised to pick up 
some other rows in the table and prove their respective ALU operation. We note in passing that 
some of these computations, beginning with the function f(x,y)=1, are not trivial.  We also note 
that there are some other useful functions computed by the ALU but not listed in the table. 
  
It may be instructive to describe the thought process that led to the design of this particular ALU.  
First, we made a list of all the primitive operations that we wanted our computer to be able to 
execute (right column in Table 7).  Next, we used backward reasoning to figure out how x, y, and 
out can be manipulated in binary fashion in order to carry out the desired operations.  These 
processing requirements, along with our objective to keep the ALU logic as simple as possible, 
have led to the design decision to use six control bits, each associated with a certain binary 
operation.  The resulting ALU is simple and elegant. 
 
3. Implementation 
 
Our implementation guidelines are intentionally partial, since we want you to discover the actual 
chip architectures yourself.  As usual, each gate can be implemented in more than one way; the 
simpler the implementation, the better. 
 
Half Adder: An inspection of Diagram 3 reveals that the functions sum(a,b) and carry(a,b) 
happen to be identical to the standard Xor(a,b) and And(a,b) functions.  Thus, the implementation 
of this adder is rather trivial, using previously built gates. 
 
Full Adder: A Full-Adder chip can be implemented from two half-adder chips and one 
additional simple gate.  Other direct implementation options are also possible, without using half-
adder chips. 
 
Adder: The addition of two signed numbers represented by the 2's complement method as two 
n-bit busses can be done bit-wise, from right to left, in n steps.  In step 0, the least significant pair 
of bits is added, and the carry bit is fed into the addition of the next significant pair of bits.  The 
process continues until in step n-1 the most significant pair of bits is added.  Note that each step 
involves the addition of 3 bits.  Hence, an n-bit adder can be implemented by creating an array of 
n full-adder chips, and chaining them in such a way that the carry bit of each adder is fed into one 
of the inputs of the next adder up the significance ladder. 
 
Incrementer: An n-bit incrementer can be implemented trivially from an n-bit adder. 
 
ALU: Note that the ALU was carefully planned to effect all the desired ALU operations 
logically, using simple Boolean operations.  Therefore, the physical implementation of the ALU 
is reduced to implementing these simple Boolean operations, following their pseudo-code 
specifications.  Your first step will likely be to create a logic circuit that manipulates a 16-bit 
input according to nx and zx control bits (i.e. the circuit should conditionally zero and negate the 
16-bit input).   This logic can be used to manipulate the x and y inputs, as well as the out output.  
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Chips for addition and for bit-wise And-ing have already been built.  Thus, what remains is to 
build logic that chooses between them according to the f control bit.  Finally, you will need some 
logic that integrates all the other chips into the overall ALU. 
 
4. Perspective 
 
The construction of the multi-bit adder presented in this chapter was standard, although no 
attention was paid to efficiency.  In fact, our suggested adder implementation is rather inefficient, 
due to the long delays incurred while the carry propagates from the least significant bit to the 
most significant bit.  This problem can be alleviated using logic circuits that effect so-called 
"carry look-ahead" techniques. Since addition is one of the most prevalent operations in any 
given computer architecture, such low-level improvements can result in dramatic and global 
performance gains throughout the computer. 
 
In any given computer, the overall functionality of the hardware/software platform is delivered 
jointly by the ALU and the operating system that runs on top of it. Thus, when designing a new 
computer system, the question of how much functionality the ALU should deliver is essentially a 
cost/performance issue. The general rule is that hardware implementations of arithmetic and 
logical operations are usually more costly, but achieve better performance.  The design tradeoff 
that we have chosen in this book is to specify an ALU hardware with a limited functionality and 
then implement as many operations as possible in software.  For example, our ALU features 
neither multiplication and division operations, nor floating point arithmetic.  Some of these 
operations (as well as more mathematical functions) will be implemented at the operating system 
level, as described in Chapter 11. 
 
Detailed treatments of Boolean arithmetic and ALU design can be found in standard 
undergraduate textbooks such as [Hennessy & Patterson, chapter 4].  
 
 
5. Build It 
 
Objective: Implement all the chips presented in this chapter, using previously built chips. 
 
Tip: When your HDL programs invoke chips that you may have built in the previous project, it is 
recommended to use instead the built-in versions of these chips.  This will ensure correctness and 
speed up the operation of the hardware simulator.  There is a simple way to accomplish this 
convention: make sure that your project directory includes only the files that belong to the present 
project. 
 
The remaining instructions for this project are identical to those from Chapter 1, except that every 
occurrence of the text "project1" should be replaced with "project2". 



Chapter 3:   Sequential Logic                                                                                                                  1           
 

 

3. Sequential Logic 1 
 “It's a poor sort of memory that only works backward.” 

Lewis Carroll (1832-1898) 

 
All the Boolean and arithmetic chips that we built in previous chapters were combinational. 
Combinational chips compute functions that depend solely on combinations of their input values.  
These relatively simple chips provide many important processing functions (like the ALU), but 
they cannot maintain state.  Since computers must be able to not only compute values but also to 
store and recall values, they must be equipped with memory elements that can preserve data over 
time.   These memory elements are built from sequential chips. 
 
The implementation of memory elements is an intricate art involving synchronization, clocking, 
and feedback loops. Conveniently, most of this complexity can be embedded in the operating 
logic of very low-level sequential gates called flip-flops.  Using these flip-flops as elementary 
building blocks, we will specify and build all the memory devices employed by typical modern 
computers, from binary cells to registers to memory banks and counters.  This effort will 
complete the construction of the chip-set needed to build an entire computer – a challenge that we 
take up in the next chapter. 
 
Following a brief overview of clocks and flip-flops, section 1 introduces all the memory chips 
that we will build on top of them. Sections 2 and 3 describe the chips specifications and 
implementation, respectively.  As usual, all the chips mentioned in the chapter can be built and 
tested using the hardware simulator supplied with the book. 
 
 
1. Background 
 
The act of “remembering something” is inherently a function of time: you remember now what 
has been committed to memory before.  Thus, in order to employ chips that “remember” 
information, we must first develop some means for representing the progression of time. 
 
The Clock: In most computers, the passage of time is marked by a master clock that delivers a 
continuous train of alternating signals. The exact hardware implementation is usually based on an 
oscillator that alternates continuously between two phases labeled “0-1”, “low-high”, “tick-tock”, 
etc. The elapsed time between the beginning of a “tick” and the end of the subsequent “tock” is 
called cycle, and each clock cycle is treated as a discrete time unit.  The current clock phase (tick 
or tock) is represented by a binary signal. Using the hardware’s circuitry, this signal is 
simultaneously broadcast to every sequential chip throughout the computer platform. 
 
Flip-flops: The most elementary sequential element in the computer is a device called flip-flop, 
of which there are several variants.  In this book we use a variant called data flip-flop, or DFF, 
whose interface consists of a single-bit data input and a single-bit data output. In addition, the 
DFF has a clock input that continuously changes according to the master clock’s signal.  Taken 

                                                 
1 From The Elements of Computing Systems, Nisan & Schocken, MIT Press, forthcoming in 2003, www.idc.ac.il/csd 
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together, the data and the clock inputs enable the DFF to implement the time-based behavior 

, where in and out are the gate’s input and output values and t is the current clock 
cycle.  In other words, the DFF simply outputs the input value from the previous time unit. 

)1()( −= tintout

 
As we now turn to show, this elementary behavior can form the basis of all the hardware devices 
in the computer that have to maintain state, from binary cells to registers to arbitrarily large 
random access memory units. 
 
Registers: A register is a storage device that can “store,” or “remember,” a value over time, 
implementing the classical storage behavior )1()( −= touttout

)1(
.  A DFF, on the other hand, can 

only output its previous input, i.e. )( −= tintout .  This suggests that a register can be 
implemented from a DFF by simply feeding the DFF output back into its input, creating the device 
shown in the middle of Fig. 1.  Presumably, the output of this device at any time t will equal its 
output at time t-1, yielding the classical function expected from a storage unit. 
 
Well, not so.  The device shown in the middle of Fig. 1 is invalid.  First, it is not clear how we’ll 
be able to ever load this device with a new data value, since there are no means to tell the DFF 
when to draw its input from the in wire and when from the out wire.  More generally, the rules 
of chip design dictate that internal pins must have a fan-in of 1, meaning that they can be fed 
from a single source only. 
 
The good thing about this thought experiment is that it leads us to the correct and elegant solution 
shown in the right of Fig. 1.  In particular, a natural way to resolve our input ambiguity is to 
introduce a multiplexor into the design.  Further, the “select bit” of this multiplexor can become 
the “load bit” of the overall register chip: if we want the register to start storing a new value, we 
can put this value in the in input and set the load bit to 1; if we want the register to keep storing 
its internal value until further notice, we can set the load bit to 0.  

DFF

M
U

X

load

DFFDFF

out(t) = in(t-1) if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

1-bit register (Bit)Flip-Flop

out(t) = out(t-1) ?
out(t) = in(t-1) ?

Invalid design

in out in out in out

 
FIGURE 1:  From DFF to single-bit register. The small triangle represents 
the clock input of the DFF.  In chip diagrams, this icon states that the marked 
chip, as well as the overall chip that encapsulates it, are time-dependent. 
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Once we have the basic ability to remember a single bit over time, we can easily construct 
arbitrarily wide registers.  This can be achieved by forming an array of as many single-bit 
registers as needed, creating a register that holds multi-bit values (Fig. 2). The basic design 
parameter of such a register is its width – the number of bits it holds; in modern computers, 
registers are usually 32-bit or 64-bit wide.  The contents of such registers are typically referred to 
as words. 

Bit out

load

in

if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

. . .Bit

w-bit register

out

load

binary cell (Bit)

in
w w

if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

Bit Bit

 
 

FIGURE 2:  From single-bit to multi-bit registers.  A multi-bit register of width w can be 
constructed from an array of w Bit chips.  The operating functions of both chips is exactly 
the same, except that the "=" assignments are single-bit and multi-bit, respectively. 

 
 
Memories: Once we have the basic ability to represent words, we can proceed to build memory 
banks of arbitrary length.  As Fig. 3 shows, this is done by stacking together many registers to 
construct a Random Access Memory (RAM) unit. The term random access memory derives from 
the requirement that read/write operations on a RAM should be able to access randomly chosen 
words, with no restrictions on the order in which they are accessed.  That is to say, we require 
that any word in the memory -- irrespective of its physical location -- will be accessed 
instantaneously, in equal speed.  
 
This requirement can be satisfied as follows.  First, we assign each word in the n-registers RAM a 
unique address (an integer between 0 to n-1), according to which it will be accessed. Second, in 
addition to stacking the n registers together, we augment the RAM chip design with a set of logic 
gates that, given an address j,  is capable of selecting the individual register whose address is j. 
 
In sum, a classical RAM device accepts three inputs: a data input, an address input, and a load bit.  
The address specifies which RAM register should be accessed in the current time unit.  In the 
case of a read operation (load=0), the RAM’s output immediately emits the value of the selected 
register.  In the case of a write operation (load=1), the selected memory register will commit the 
input value in the next time unit, at which point the RAM’s output will start emitting it. 
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load

(0 to n-1)
Direct Access Logic

register 0

register 1

register n-1

RAM n

..

.
register 2

in out

(word) (word)

address

 
 

FIGURE 3:  RAM chip (conceptual). The width and length of the RAM can vary. 
 
The basic design parameters of a RAM device are its data width -- the width of each one of its 
words, and its size -- the number of words in the RAM.  Modern computers typically employ 32- 
or 64-bit wide RAMs whose size is up to hundreds of millions. 
 
Counters: A counter is a sequential chip whose state is an integer number that increments every 
time unit, effecting the function out(t)=out(t-1)+c, where c is typically 1. Counters play an 
important role in digital architectures.  For example, most CPU’s include a program counter that 
keeps track of the address of the instruction that should be executed next in the current program.   
 
A counter chip can be implemented by combining the input/output logic of a standard register 
with the combinatorial logic for adding the constant 1.  Typically, the counter will have to be 
equipped with some additional functionality, such as possibilities for resetting the count to zero, 
loading a new counting base, or decrementing instead of incrementing.  
 
Time Matters 
 
All the chips that were described above are sequential.  Simply stated, a sequential chip is a chip 
that includes one or more DFF gates, either directly or indirectly.  Functionally speaking, the DFF 
gates endow sequential chips with the ability to either maintain state (as in memory units), or to 
operate on state (as in counters).  Technically speaking, this is done by forming feedback loops 
inside the sequential chip (see Fig. 4).  In combinational chips, where time is neither modeled nor 
recognized, the introduction of feedback loops will be problematic: the output would depend on 
the input, which itself would depend on the output, and thus the output would depend on itself. 
On the other hand, there is no difficulty in feeding the output of a sequential chip back into itself, 
since the DFFs introduce an inherent time delay: the output at time t does not depend on itself, but 
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rather on the output at time t-1. This property guards against the uncontrolled “data races” that 
would occur in combinational chips with feedback loops. 
 

out = some function of  (in)

Combinational Chip

comb.
logicin out

out(t) = some function of  (in(t-1), out(t-1))

Sequential Chip

comb.
logicin outDFF

gate(s)
comb.
logic

(optional) (optional)time delay

 
 

FIGURE 4:  Combinational versus sequential logic (in and out stand for potentially 
several input and output variables). Sequential chips always consist of one  layer of DFFs 
and optional combinational logic layers. 

 
Recall that the outputs of combinational chips change when their inputs change, irrespective of 
time.  In contrast, the special architecture of sequential chips implies that their outputs change 
only at the point of transition from one clock cycle to the next, and not within the clock cycle 
itself.  In fact, we allow sequential chips to be in unstable states during clock cycles, requiring 
only that by the beginning of the next cycle they will output correct values. 
 
This “discretization” of the sequential chips outputs has an important side effect: it is used to 
synchronize the overall computer architecture. To illustrate, suppose we instruct the arithmetic 
logic unit (ALU) to compute yx +  where x is the value of a nearby register and y is the value of 
a remote RAM register. Because of various physical constraints (distance, resistance, 
interference, random noise, etc.) the electrons representing x and y will arrive to the ALU at 
different times.  However, being a combinational chip, the ALU it insensitive to the concept of 
time -- it continuously adds up whichever data values happen to lodge in its inputs.  Thus, it will 
take some time before the ALU’s output will stabilize to the correct yx +  result.  Until then, the 
ALU will generate garbage. 
 
How can we overcome this difficulty? Well, since the output of the ALU is always routed to 
some sort of a sequential chip (a register, a RAM location, etc.), we don’t really care.  All we 
have to do is ensure that the length of the clock cycle will be slightly longer that the time it takes 
an electron to travel the longest distance from one chip in the architecture to another.  This way, 
we are guaranteed that by the time the sequential chip will update its state (at the beginning of the 
next clock cycle), the inputs that it will receive from the ALU will be correct.  This, in a nutshell, 
is the trick that synchronizes a set of stand-alone hardware components into a well-coordinated 
system, as we will see in Chapter 5. 
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2. Specification 
 
This section specifies a hierarchy of sequential chips:  
 
 D-Flip-flops (DFF) 
 Registers (based on DFF’s) 
 Memory banks (based on registers) 
 Counter chips (also based on registers) 

 
D-Flip-Flop 
 
The most elementary storage device that we present – the basic component from which all 
memory elements will be designed – is the Data Flip-Flop gate.  A DFF gate has a single-bit 
input and a single-bit output, as follows: 
 

Chip name: DFF 
Inputs:    in 
Outputs:   out 
Function: out(t)=in(t-1) 

DFF outin

 
Comment: This clocked gate has a built-in 

implementation and thus there is 
no need to implement it. 

 
Like Nand gates, DFF gates enter our computer architecture at a very low level.  Specifically, all 
the sequential chips in the computer (registers, memory, and counters) are based on numerous 
DFF gates.  All these DFFs are connected to the same master clock, forming a huge distributed 
“chorus line”.  At the beginning of each clock cycle, the outputs of all the DFFs in the computer 
commit to their inputs during the previous time-unit.  At all other times, the DFFs are “latched,” 
meaning that changes in their inputs have no immediate effect on their outputs. This remarkable 
conduction feat is done in parallel, many times each second (depending on the clock frequency).  
 
In hardware implementations, the time-dependency of the DFF gates is achieved by 
simultaneously feeding the master clock signal to all the DFF gates in the platform.  Hardware 
simulators emulate the same effect in software.  As far the computer architect is concerned, the 
end result is the same: the inclusion of a DFF gate in the design of any chip ensures that the 
overall chip, as well as all the chips that depend on it up the hardware hierarchy, will be 
“automatically” time-dependent.  These chips are called sequential, by definition. 
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Registers 
 
A single-bit register, which we call Bit, or binary cell, is designed to store a single bit of 
information (0 or 1).  The chip interface consists of an input pin which carries a data bit, a load 
bit which enables the cell for writes, and an output pin which emits the current state of the cell. 
The interface diagram and API of a binary cell are as follows: 

 
Chip name: Bit 
Inputs:    in,load 
Outputs:   out 

Bit outin

load

 
Function: If load(t-1) then out(t)=in(t-1) 

else out(t)=out(t-1) 
 
The API of the Register chip is essentially the same as that of a binary cell, except that the 
input and output pins are designed to handle multi-bit values: 
 

Chip name: Register         
Inputs:    in[16],load 
Outputs:   out[16] 
Function: If load(t-1) then out(t)=in(t-1) 

else out(t)=out(t-1) in Register

load

w bits
out

w bits

 
Comment: “=” is a 16-bit operation. 

 
The Bit and Register chips have exactly the same read/write behavior, as follows: 
 
Read: To read the contents of a register, we simply probe its multi-bit output.  
 
Write: To write a new multi-bit data value d into a register, we put d in the in input and assert 

the load input. In the next clock cycle, the register will commit to the new data value, and 
its output will start emitting d. 

 
Memory 
 
A direct-access memory unit, also called RAM, is an array of n w-bit registers, equipped with 
direct access circuitry. The number of registers (n) and the width of each register (w) are called 
the memory’s size and width, respectively.  We will build a hierarchy of such RAM units, all 16-
bit wide, but with varying sizes: RAM8, RAM64, RAM512, RAM4K, and RAM16K units.  All these 
memory chips have precisely the same API, and thus we describe them in one parametric 
diagram, as follows: 
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Chip name: RAMn  // n and k are listed below 
Inputs:    in[16],address[k],load 

Outputs:   out[16] 

Function: Out(t)=RAM[address(t)](t) 
If load(t-1) then 
   RAM[address(t-1)](t)=in(t-1) 

Comment: “=” is a 16-bit operation. 

We need 5 such chips, as follows: 
Chip name n   k 

 RAM8 8     3 
 RAM64 64     6 
 RAM512 512     9 
 RAM4K 4096   12 

address

load

out

in

16  bits

log 2 n
bits

RAMn
16  bits

  RAM16K 16384   14 
 
Read: To read the contents of register number m, we put m in the address input. The RAM's 

direct-access logic will select register number m, which will then emit its output value to the 
RAM's output pin. This is a combinational operation, independent of the clock.  

 
Write: To write a new data value d into register number m, we put m in the address input, d in 

the in input, and assert the load input bit. The RAM's direct-access logic will select register 
number m, and the load bit will enable it. In the next clock cycle, the selected register will 
commit to the new value (d), and the RAM’s output will start emitting it. 

 
Counter 
 
Although a counter is a stand-alone abstraction in its own right, it is convenient to motivate its 
specification by saying a few words about the context in which it is normally used.  For 
example, consider a counter chip designed to contain the address of the instruction that the 
computer should fetch and execute next.  In most cases, the counter has to simply increment 
itself by 1 in each clock cycle, thus causing the computer to fetch the next instruction in the 
program.  In other cases, e.g. in “jump to execute instruction number n”, we want to be able to 
set the counter to n, and then have it continue its default counting behavior: n , 1+ 2+n , etc. 
Finally, the program’s execution can be restarted anytime by simply setting the counter to 0, 
assuming that that’s the address of the program’s first instruction.  In short, we need a loadable 
and resettable counter. 
 
With that in mind, the interface of our Counter chip is similar to that of a register, except that it 
has two additional control bits, labeled reset and inc.  When inc=1, the counter increments 
its state in every clock cycle, emitting the value out(t)=out(t-1)+1.  If we want to reset the 
counter to 0,  we assert the reset bit;  if we want to initialize it to some other counting base d, 
we put d in the IN input and assert the load bit. The details are given in the counter API, and an 
example of its operation is depicted in Fig. 5. 
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PC (counter)
w bits

outin
w bits

inc load reset

 
 

Chip name: PC   // 16-bit counter 
Inputs:    in[16],inc,load,reset 
Outputs:   out[16] 
Function: If reset(t-1) then out(t)=0 

   else if load(t-1) then out(t)=in(t-1) 
        else if inc(t-1) then out(t)=out(t-1)+1  
             else out(t)=out(t-1) 

Comment: “=” is a 16-bit operation.  
“+”  is 16-bit arithmetic addition. 

 
47 47 0 0 1 2 3 4 527 528 529 530 530

527 527 527 527 527 527 527 527 527 527 527 527 527

reset

load

22 23 24 25 26 27 28 29 30 31 32 33 34

inc

clock

in

cycle

out

We assume that we start tracking the counter in time unit 22, when its input
and output happen to be 527 and 47, respectively.  We also assume that the
counter's control bits (reset, load, inc) are 0 -- all aribtrary assuptions.  

 
FIGURE 5: Counter Simulation. At time 23 a reset signal is issued, causing the counter to 
emit zero in the following time-unit.  The zero persists until an inc signal is issued at time 25, 
causing the counter to starts incrementing, one time-unit later.  The counting continues until at 
time 29 the load bit is asserted.  Since the counter’s input holds the number 527, the counter is 
reset to that value in the next time-unit.  Since inc is still asserted, the counter continues 
incrementing, until time 33, when inc is de-asserted. 

 
3. Implementation 
 
Flip-Flop: DFF gates can be implemented from lower-level logic gates like those built in Chapter 
1. However, in this book we view DFF gates as primitive, and thus they can be used in hardware 
construction projects without worrying about their internal implementation. 
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1-bit register (Bit): The implementation of this chip was given in Fig. 1. 
 
Register: The construction of a w-bit Register chip from binary cells is straightforward.  All 
we have to do is construct an array of w Bit gates and feed the register’s load input to all of 
them. 
 
8-Registers Memory (RAM8): An inspection of Fig. 3 may be useful here.  To implement a 
RAM8 chip, we line up an array of 8 registers. Next, we have to build combinational logic that, 
given a certain address value, takes the RAM8's in input and loads it into the selected register. 
In a similar fashion, we have to build combinational logic that, given a certain address value, 
selects the right register and pipes its out value to the RAM8's out output.  Tip: the 
combinational logic mentioned above was already implemented in Chapter 1. 
 
n-Registers Memory: A memory bank of arbitrary length (a power of 2) can be built recursively 
from smaller memory units, all the way down to the single register level.  This view is depicted in 
Fig. 6.  Focusing on the right hand side of the figure, we note that a 64-register RAM can be built 
from an array of eight 8-register RAM chips. To select a particular register from the RAM64 
memory, we use a 6-bit address, say xxxyyy.  The MSB xxx bits select one of the RAM8 chips, 
and the LSB yyy bits select one of the registers within the selected RAM8.  The RAM64 chip 
should be equipped with logic circuits that affect this hierarchical addressing scheme. 
 

Bit Bit register

RAM8Register

RAM 8

RAM 64

8

8

register

..

.
register

..

.

RAM8

. . .Bit . . .
 

 
FIGURE 6:  Gradual construction of memory banks by recursive ascent. A w-bit register 
is an array of w binary cells, an 8-register RAM an array of eight w-bit registers, a 64-register 
RAM an array of eight RAM8 chips, and so on.  Only three more similar construction steps are 
necessary to build a 16K RAM chip.  
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Counter: A w-bit counter consists of two main elements: a regular w-bit register, and 
combinational logic.  The combinational logic is designed to (a) compute the counting function, 
and (b) put the counter in the right operating mode, as mandated by the values of its three control 
bits.  Tip: most of this logic was already built in Chapter 2. 
 
4. Perspective 
 
The cornerstone of all the memory systems described in this chapter is the flip-flop – a gate that 
we treated here as an atomic, primitive building block.  The usual approach in hardware 
textbooks is to construct flip-flops from elementary combinatorial gates (e.g. Nand gates) using 
appropriate feedback loops.  The standard construction begins by building a simple (non-clocked) 
flip-flop that is bi-stable, i.e. that can be set to be in one of two states.  Then a clocked flip-flop is 
obtained by cascading two such simple flip-flops, the first being set when the clock tics and the 
second when the clock tocks.  This “master-slave” design endows the overall flip-flop with the 
desired clocked synchronization functionality. 
 
These constructions are rather elaborate, requiring an understating of delicate issues like the 
effect of feedback loops on combinatorial circuits, as well as the implementation of clock cycles 
using a two-phase binary clock signal.   In this book we have chosen to abstract away these low-
level considerations by treating the flip-flop as an atomic gate.  Readers who wish to explore the 
internal structure of flip-flop gates can find detailed descriptions in [Mano, chapter 6] and 
[Hennessy & Patterson, appendix B].  
 
In closing, we should mention that memory devices of modern computers are not always 
constructed from standard flip-flops.  Instead, modern memory chips are usually very carefully 
optimized, exploiting the unique physical properties of the underlying storage technology.  Many 
such alternative technologies are available today to computer designers; as usual, which 
technology to use is a cost-performance issue. 
 
All the other chip constructions in this chapter -- the registers and memory chips that were built 
on top of the flip-flop gates -- were rather standard.   
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5. Build It 
 
Objective: Build the chips listed below (except the first one).  The only building blocks that you 
can use are primitive DFF gates, chips that you will build on top of them, and chips built in 
previous chapters. 
 

 DFF ........... Data Flip-Flop (primitive – no need to implement) 
 Bit  .......... 1-bit binary cell 
 Register ...... 16-bit  
 RAM8 .......... 16-bit / 8-register memory 
 RAM64 ......... 16-bit / 64-register memory 
 RAM512  ....... 16-bit / 512-register memory 
 RAM4K  ........ 16-bit / 4,096-register memory 
 RAM16K  ....... 16-bit / 16,384-register memory 
 PC  ........... 16-bit counter 

 
Resources: The main tool that you will use in this project is the hardware simulator supplied with 
the book.  All the chips should be implemented in the HDL language specified in appendix A. 
 
As usual, for each chip mentioned above we supply a skeletal .hdl program with a missing 
implementation part, a .tst script file that tells the hardware simulator how to test it, and a .cmp 
“compare file.”  All these files are packed in one file named project3.zip.  Your job is to 
complete the missing implementation parts of all the .hdl programs. 
 
Contract: When loaded into the hardware simulator, your chip design (modified .hdl program), 
tested on the supplied .tst file, should deliver the behavior specified in the supplied .cmp file.  
If that is not the case, the simulator will let you know. 
 
Tip: When your HDL programs invoke chips that you may have built in previous projects, it is 
recommended to use the built-in versions of these chips instead.  This will ensure correctness and 
speed up the simulator’s operation.  There is a simple way to accomplish this convention: make 
sure that your project directory includes only the files that belong to the present project. 
 
Likewise, when constructing RAM chips from smaller ones, we recommend to use built-in 
versions of the latter.  Otherwise, the simulator may run very slowly or even out of (real) memory 
space, since large RAM chips contain many tens of thousands of lower level chips, and all these 
chips must be simulated as software objects by the simulator.  Thus, we suggest that after you 
complete the implementation and testing of a RAM chip, you will move its respective HDL file 
out from the project directory.  This way, the simulator will resort to using the built-in versions of 
these chips. 
 
Steps:  We recommend proceeding in the following order: 
 
0. Before starting this project, read sections 6 and 7 of  Appendix A. 
1. Create a directory called project3 on your computer; 
2. Download the project3.zip file and extract it to your project3 directory; 
3. Build and simulate all the chips. 

http://www1.idc.ac.il/digitalCore/tools/index.html
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4. Machine Language1 

 
“Form ever follows function” , Louis Sullivan (architect, 1856-1924) 

“Form IS function”,  Ludwig Mies van der Rohe (architect, 1886-1969) 
 

A computer can be described constructively, by laying out its hardware platform and explaining 
how it is built from low-level chips.  A computer can also be described abstractly, by specifying 
and demonstrating its machine language capabilities. And indeed, it is easier to get acquainted 
with a new computer system by first seeing some low-level programs written in its machine 
language.  This helps us understand not only how to program the computer to do useful things, 
but also why its hardware was designed in a certain way. With that in mind, this chapter focuses 
on low-level programming in general, and on the Hack machine language in particular.  This will 
set the stage for the next chapter, where we complete the construction of the Hack computer from 
the chips that we built in the previous chapters. 
 
A machine language is an agreed-upon formalism, designed to code low-level programs as series 
of machine instructions. Using these instructions, the programmer can command the processor to 
perform arithmetic and logic operations, fetch and store values from and to the memory, move 
values from one register to another, test Boolean conditions, and so on.  As opposed to high level 
languages, whose basic design goals are generality and power of expression, the goal of machine 
language’s design is direct execution in, and total control of, a given hardware platform.  Of 
course, generality, power, and elegance are still desired, but only to the extent that they adhere to 
the basic requirement of direct execution in hardware. 
 
Machine language is the most profound interface in the overall computer enterprise -- the fine 
line where hardware and software meet.  This is the point where the abstract thoughts of the 
programmer, as manifested in symbolic instructions, are turned into physical operations 
performed in silicon.  Thus, machine language is construed both a programming tool and an 
integral part of the hardware platform.  In fact, just like we say that the machine language is 
designed to exploit a given hardware platform, we can say that the hardware platform is designed 
to fetch, interpret and execute, instructions written in the given machine language. 
 
The chapter begins with a general introduction of machine language programming.  Next, we 
give a detailed specification of the Hack machine language, covering both its binary and 
symbolic assembly versions.  The project that accompanies this chapter deals with writing a 
couple of machine language programs. 
 
Although most people will never write programs directly in machine language, the study of low-
level programming is a pre-requisite to a complete understanding of the computer’s anatomy.  
Also, it is rather fascinating to realize how the most sophisticated software systems are, at 
bottom, long series of elementary instructions, each specifying a very simple and primitive 
operation on the underlying hardware. 

                                                 
1 From The Elements of Computing Systems, Nisan & Schocken, MIT Press, forthcoming in 2003, www.idc.ac.il/csd 
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1. Background 
 
This chapter is language-oriented.  Therefore, we can abstract away most of the details of the 
underlying hardware platform.  In particular, in order to give a general description of machine 
languages, it is sufficient to focus on three main hardware elements only: a processor, a memory, 
and a set of registers. 
 
1.1 Machines 
 
A machine language can be viewed as an agreed-upon formalism, designed to manipulate a 
memory using a processor and a set of registers. 
 
Memory: The term “memory” refers loosely to the collection of hardware devices designed to 
store data and instructions.  Some computer platforms store data and instructions in the same 
memory device, while others employ different data and instruction memories, each featuring a 
separate address space.  Conceptually speaking, all memories have the same structure: a 
continuous array of cells of some fixed width, also called words or locations, each having a 
unique address.  Hence, an individual word (representing either a data item or an instruction) is 
specified by supplying its address.  In what follows we will refer to such individual words using 
the notations Memory[address], RAM[address], or M[address] for brevity. 
 
Processor: The processor, normally called Central Processing Unit or CPU, is a device capable 
of performing a fixed set of operations.  These typically include arithmetic and logic operations, 
memory access operations, and control (also called branching) operations.  The operands of these 
operations are the current values of registers and selected memory locations. Likewise, the results 
of the operations can be stored either in registers or in selected memory locations. 
 
Registers: Memory access is a relatively slow operation requiring long instruction formats (an 
address may require 32 bits). For this reason, most processors are equipped with several registers, 
each capable of holding a single value.  Located in the processor’s immediate proximity, the 
registers serve as a high-speed local memory, allowing the processor to quickly store and retrieve 
data.  This setting enables the programmer to minimize the use of memory access commands, 
thus speeding up the program’s execution.  In what follows we will refer to the registers as R0, 
R1, R2, etc. 
 
1.2 Languages 
 
A machine language program is a series of coded instructions.  For example, a typical instruction 
in a 16-bit computer may be “1010001100011001”.  In order to figure out what this instruction 
means, we have to know the rules of the game, i.e. the instruction set of the underlying hardware 
platform.  For example, the language may be such that each instruction consists of four 4-bit 
fields: the left-most field codes a CPU operation, and the remaining fields represent the 
operation’s operands.  Thus the above command may code the operation “set R3 to R1+R9”, 
depending of course on the hardware specification and the machine language syntax. 
 
Since binary codes are rather cryptic, machine languages are normally specified using both binary 
codes and symbolic mnemonics (a mnemonics is a symbolic label that “stands for” something -- 
in our case binary codes).  For example, the language designer can decide that the operation code 
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“1010” will be represented by the mnemonic “add”, and that the registers of the machine will be 
symbolically referred to using the symbols R0, R1, R2, …. Using these conventions, one can 
specify machine language instructions either directly, as “1010001100011001”, or 
symbolically, as, say, “ADD R3,R1,R9”. 
 
Taking this symbolic abstraction one step further, we can allow ourselves to not only read 
symbolic notation, but to actually write programs using symbolic commands rather then binary 
instructions. Next, we can use a text processing program to parse the symbolic commands into 
their underlying fields (mnemonics and operands), translate each field into its equivalent binary 
representation, and assemble the resulting codes into binary machine instructions. The symbolic 
notation is called assembly language, or simply assembly, and the program that translates from 
assembly to binary is called assembler. 
 
Since different computers vary in terms of CPU operations, number and type of registers, and 
assembly syntax rules, the result is a tower of Babel of machine languages, each with its own 
obscure syntax. Yet irrespective of this variety, all machine languages support similar sets of 
generic commands, as we now turn to describe. 
 
1.3 Commands 
 
Arithmetic and logic commands:  Every computer is required to perform basic arithmetic 
operations like addition and subtraction as well as basic Boolean operations like bit-wise 
negation, bit shifting, etc.  Different machines feature different sets and versions of such 
operations, and different ways to apply them to combinations of registers and selected memory 
locations.  Here are some typical possibilities that can be found in various machines: 
 

// In all the examples, x is a user-defined label referring to a certain memory location. 
 
ADD R2,R3     // R2 R2+R3 where R2 and R3 are registers 
 
ADD R2,x      // R2 R2+x  
 
AND R4,R5,R2  // R4 bit wise “And” of R5 and R2 
 
SUBD x        // D (D-x) where D is a register  
 
ADD x         // add the value of x to a special register called “accumulator” 

 
 
Memory Access commands: Memory access commands fall into two categories.  First, as we 
have just seen, in some cases arithmetic and logical commands are allowed to operate on selected 
memory locations. Second, all computers feature explicit load and store commands, designed to 
move data between the registers and the memory. 
 
Memory access commands may use several types of addressing modes -- ways of specifying the 
address of the required memory word. As usual, different computers offer different possibilities 
and different notations, but three memory access modes are almost always supported: 
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• Direct addressing: The most common way to address the memory is to express a specific 

address or use a symbol that refers to a specific address:   
 

LOAD R1,67    //  R1 Memory[67]   
 

// Assume that sum refers to memory address 67 

LOAD R1,sum   //  R1 Memory[67] 

 
• Immediate addressing: This form of addressing is used to load constants – i.e. load values 

that appear in the instruction proper: instead of treating the field that appears in the “load” 
command as an address, we simply load the value of the field itself into the register.   

 

LOADI R1,67  // R1 67 

 
• Indirect addressing: In this addressing mode the address of the required memory location is 

not hard-coded into the instruction; instead, the instruction specifies a memory location that 
holds the required memory address. This addressing mode is used to manage pointers in high-
level programming languages. For example, consider the high-level command “x=arr[j]” 
where arr is an array and x and j are variables.  How can we translate this command into 
machine language?  Well, when the array arr is declared and initialized in the high-level 
program, a memory segment of the correct length is allocated to hold the array data. Second, 
another memory location, referred to by the symbol arr, is allocated to hold the base address 
of the array’s segment. 
 
Now, when the compiler is asked to translate a reference to cell arr[j], it goes through the 
following process.  First, note that the j’th entry of the array should be physically stored in a 
memory location that is at a displacement j from the array’s base address (assuming, for 
simplicity, that each array element uses a single word).  Hence the address corresponding to 
the expression arr[j] can be easily calculated by adding the value of j to the value of arr.  
Thus in the C programming language, for example, a command like x=arr[j] can be also 
expressed as x=*(arr+j), where the notation “*n” stands for “the value of Memory[n]”.   
When translated into machine language, such commands typically yield the following code 
(depending on the assembly language syntax): 

 
// translation of x=arr[j] or x=*(arr+j): 
ADD R2,arr,j   //   R2 arr+j 

LOAD* R1,R2    //   R1 memory[R2] 

STR R1,x       // x R1 
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Flow of control commands: While programs normally execute in a linear fashion, one command 
after the other, they also include occasional branches to locations other than the next command. 
Branching serves several purposes including repetition (jump backward to the beginning of a 
loop), conditional execution (if a Boolean condition is false, jump forward to the location after 
the “if-then” clause), and subroutine calling (jump to the first command of some other code 
segment).  In order to support these programming constructs, every machine language features 
means to jump to various locations in the program, both conditionally and unconditionally. In 
assembly languages, locations in the program can also be given symbolic names, using some 
syntax for specifying labels.  Program 1 illustrates a typical example. 
 

High level  Low level 
// a while loop  // typical translation 
while (R1>=0) {  beginWhile: 

   code segment 1    JNG R1,endWhile // if R1<0 goto endWhile  
}    here comes the translation of code segment 1 

code segment 2    JMP beginWhile    // goto beginWhile 
  endWhile: 

    here comes the translation of code segment 2 

 
PROGRAM 1:  High- and low-level branching logic.  The syntax of goto 
commands varies from one language to another, but the basic idea is the same. 

 
Unconditional jump commands like “JMP beginWhile” specify only the address of the target 
location.  Conditional jump commands like “JNG R1,endWhile” must also specify a condition, 
expressed in some way.  In some languages the condition is an explicit part of the command, 
while in others it is a by-product of a previous command.  Here are some possible examples 
(noting again that the commands’ syntax is less important than their general spirit): 
 

// Assume that the foo label is defined elsewhere in the program (not shown here). 
 
JGE R1,foo        //  if R1>=0 then goto foo 
 
SUB R1,R2;JEQ foo //   R1 R1-R2; if (result=0) then goto foo 
 
JZR foo           //   if (result of the previous command = 0) then goto foo 
 
JMP foo           //   goto foo (unconditionally) 

 
 

* * * 
 
This ends our general and informal introduction of machine languages, and the generic 
commands that can typically found in various hardware platforms.  The next section will be more 
formal, since it describes one specific machine language -- the native code of the computer that 
we will build in the next chapter. 
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2. Hack Machine Language Specification 
 
2.1 Overview 
 
Hack is a typical Von Neumann platform: a 16-bit machine, consisting of a CPU, two separate 
memory modules serving as instruction memory and data memory, and two memory-mapped I/O 
devices: a screen and a keyboard.    
 
Memory Address Spaces: The Hack programmer is aware of two distinct memory address 
spaces: an instruction memory and a data memory.  Both memories are 16-bit wide and have a 
15-bit address space, meaning that the maximum size of each memory is 32K 16-bit words.   
 
The CPU can only execute programs that reside in the instruction memory.  The instruction 
memory is a read-only device, and thus programs are loaded into it using some exogenous means.  
For example, the instruction memory can be implemented in a ROM chip which is pre-burned 
with the required program.  Loading a new program can be done by replacing the entire ROM 
chip (similar to replacing a cartridge in a game computer). In order to simulate this operation, 
hardware simulators of the Hack platform must provide means to load the instruction memory 
from a text file containing a machine language program.  
 
Registers: The Hack programmer is aware of two registers called D and A.   These general-
purpose 16-bit registers can be manipulated explicitly by arithmetic and logical instructions, e.g. 
A=D-1 or D=!A (where “!” means 16-bit “not”). While D is used solely to store data values, A 
doubles as both a data register and an address register.  That is to say, depending on the 
instruction context, the contents of A can be interpreted either as a data value, or as an address in 
the data memory, or as an address in the instruction memory, as we now turn to explain. 
 
First, the A register can be used to facilitate direct access to the data memory (which, from now 
on, will be often referred to as “memory”). As the next section will describe, the syntax of the 
Hack language is such that memory access instructions do not specify an explicit address.  
Instead, they operate on an implicit memory location labeled “M”, e.g. D=M+1. In order to resolve 
this address, the contract is such that M always refers to the memory word whose address is the 
current value of A.  For example, if we want to effect the operation D=Memory[516]-1, we have 
to set the A register to 516, and then issue the instruction D=M-1. 
 
Second, in addition to doubling as a general-purpose register and as an address register for the 
data memory, the hard working A register is also used to facilitate direct access to the instruction 
memory.   As we will see shortly, the syntax of the Hack language is such that jump instructions 
do not specify a particular address.  Instead, the contract is such that any jump operation always 
affects a jump to the instruction memory word addressed by A.  For example, if we want to effect 
the operation “goto 35”, we set A to 35 and issue a “goto” command.  This will cause the 
computer to fetch the instruction located in InstructionMemory[35] in the next clock cycle. 
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Example: Since the Hack language is quite self-explanatory, we start with an example.  The only 
non-obvious command in the language is “@address”, where address is either a number or a 
symbol representing a number.  This command simply stores the specified value into the A 
register.  For example, if sum refers to memory location 17, then both “@17” and “@sum” will 
have the same effect: A 17.   
 
And now to the example: Suppose we have to add all the numbers between 1 and 100, using 
repetitive addition.  Program 2 gives a C language solution and a possible compilation into the 
Hack language. 
   
 
C language   Hack machine language 

  // sum the numbers 1...100  // sum the numbers 1...100 
 int i=1;        @i     // i refers to some mem. loc.  
 int sum=0;        M=1    // i=1  
 while (i<=100){        @sum   // sum refers to some mem. loc. 
    sum+=I;        M=0    // sum=0  
    i++;  (loop)       

 }        @i      

       D=M    // D=i                          

        @100                                 

        D=D-A  // D=i-100                      

        @end                                 

        D;jgt  // if (i-100)>0 goto end        

        @i                         

       D=M    // D=i                          

        @sum                                 

       M=D+M  // sum=sum+i                    

        @i                             

       M=M+1  // i=i+1                        

        @loop                     

        0;jmp   // goto loop                    
   (end) 

 
PROGRAM 2: C and assembly versions of the same program.  

 
 
Although the Hack syntax is more accessible than that of typical machine languages, it may still 
look rather obscure for readers who are not used to low-level programming.  In particular, note 
that every operation involving a memory location requires two Hack commands: one for selecting 
the address on which we want to operate, and one for specifying the desired operation.  Indeed, 
the Hack language consists of two generic instructions: an address instruction, also called A-
instruction, and a compute instruction, also called C-instruction.  Each instruction has a binary 
representation, a symbolic representation, and an effect on the computer, as we now turn to 
specify.  
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2.2 The A-Instruction 
 
The A-instruction is used to set the A register to a 15-bit value: 
  

0 v v v v v v v v v v v v v v v

value

Binary:

Symbolic: @value     // where value is either a number
                   // (decimal representation of the 15-bit  vvv...v)
                   // or a symbol referring to such number.  

 
FIGURE 3:  A-Instruction syntax. 

 
This instruction causes the computer to store a constant in the A register.  For example, the 
instruction @5, which is equivalent to 0000000000000101, causes the computer to store the 
binary representation of 5 in the A register. 
 
The A-instruction is used for three different purposes. First, it provides the only way to enter a 
constant into the computer under program control.  Second, it sets the stage for a subsequent C-
instruction designed to manipulate a certain data memory location, by first setting A to the 
address of that location. Third, it sets the stage for a subsequent C-instruction that involves a 
jump, by first loading the address of the jump destination to the A register.  These uses will be 
demonstrated below. 
 
2.3 The C-Instruction 
 
The C-instruction is the programming workhorse of the Hack platform -- the instruction that gets 
almost everything done.  The instruction code is a specification that answers three questions: (a) 
what to compute? (b) where to store the computed value? and (c) what to do next?   Along with 
the A-instruction, these specifications determine all the possible operations of the computer. 

1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

jumpdestcomp

Binary:

Symbolic: dest=comp;jump
 

 
FIGURE 4:  C-Instruction syntax. 

 
The MSB is the C-instruction code, which is 1.  The next two bits are not used.  The remaining 
bits form three fields that correspond to the three parts of the instruction’s symbolic 
representation. Taken together, the semantics of the symbolic instruction dest=comp;jump is as 
follow.  The comp field instructs the CPU what to compute.  The dest field instructs where to 
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store the computed value. The jump field specifies a jump condition.  Either the dest field or 
the jump field or both may be empty.  If the dest field is empty then the “=” sign may be 
omitted.  If the jump field is empty then the “;” symbol may be omitted. We now turn to 
describe the format and semantics of each of the three fields.   
 
The computation specification: The Hack ALU is designed to compute a fixed set of functions 
on the D, A, and M registers (where M=Memory[A]).  The computed function is specified by the a-
bit and the six c-bits comprising the instruction’s comp field.  This 7-bit pattern can potentially 
code 128 different functions, of which only the 28 listed in Table 5 are documented in the 
language specification.   
 

a=0  
mnemonic c1 c2 c3 c4 c5 c6  
0 1 0 1 0 1 0  

1 1 1 1 1 1 1  

-1 1 1 1 0 1 0  

D 0 0 1 1 0 0  

A 1 1 0 0 0 0 M 

!D 0 0 1 1 0 1  

!A 1 1 0 0 0 1 !M 

-D 0 0 1 1 1 1  

-A 1 1 0 0 1 1 -M 

D+1 0 1 1 1 1 1  

A+1 1 1 0 1 1 1 M+1 

D-1 0 0 1 1 1 0  

A-1 1 1 0 0 1 0 M-1 

D+A 0 0 0 0 1 0 D+M 

D-A 0 1 0 0 1 1 D-M 

A-D 0 0 0 1 1 1 M-D 

D&A 0 0 0 0 0 0 D&M 

D|A 0 1 0 1 0 1 D|M 

 c1 c2 c3 c4 c5 c6 mnemonic 
 a=1 

 
TABLE 5:  The "compute" specification of the C-instruction.  D and A are names of 
registers.  M refers to the memory location addressed by A, i.e. to Memory[A]. The symbols 
“+” and “–“ denote 16-bit 2’s complement addition and subtraction, while “!”, “|”, and “&” 
denote the 16-bit bit-wise Boolean operators Not, Or, And, respectively. Note the similarity 
between this instruction set and the ALU specification given in Table 7 of Chapter 2.  

 
Recall that the format of the C-instruction is "111a cccc ccdd djjj".  Suppose we want to 
compute D-1, i.e. "the current value of the D register minus 1".   According to Table 5, this can be 
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done by issuing the instruction "1110 0011 10xx xxxx" (we use "x" to label bits that are 
irrelevant to the given example). To compute the value of D|M, we issue the instruction "1111 
0101 01xx xxxx".  To compute the constant -1, we issue the instruction "1110 1110 10xx 
xxxx", and so on. 
 
The destination specification: The value computed by the comp part of the C-instruction can be 
simultaneously stored in several destinations, as specified by the instruction's dest part. The first 
and second d-bits code whether to store the computed value in the A register and in the D register, 
respectively.  The third d-bit codes whether to store the computed value in M (i.e. in Memory[A]).  
One, more than one, or none of these bits may be asserted. 
  

d1 d2 d3 mnemonic destination (where to store the computed value) 

0  0 0 null The value is not stored anywhere 
0 0 1 M Memory[A]  (memory register addressed by A) 
0 1 0 D D register 
0 1 1 MD Memory[A] and D register  
1 0 0 A A register 
1 0 1 AM A register and Memory[A] 
1 1 0 AD A register and D register 
1 1 1 AMD A register, Memory[A], and D register  

 
TABLE 6:  The "destination" specification of the C-instruction.  

 
Recall that the format of the C-instruction is "111a cccc ccdd djjj".  Suppose we want the 
computer to increment the value of Memory[7] by 1, and also store the result in the D register.  
According to tables 5 and 6, this can be accomplished by the instructions:  
 

0000 0000 0000 0111    // @7 
1111 1101 1101 1xxx    // DM=M+1  (x=irrelevant bits) 

 
The A-instruction causes the computer to select the memory register whose address is 7 (the so 
called "M register").  The subsequent C-instruction computes the value of M+1 and stores the 
result in both D and M.  The role of the 3 LSB bits of the second instruction is explained next.  
 
The jump specification: The jump field of the C-instruction tells the computer what to do next. 
There are two possibilities: the computer should either fetch and execute the next instruction in 
the program, which is the default, or it should fetch and execute an instruction located elsewhere 
in the program.  In the latter case, we assume that the A register has been previously set to the 
address to which we want to jump. 
 
The jump itself is performed conditionally according to the value computed in the “comp” part of 
this instruction.  The first j-bit specifies whether to jump in case this value is negative, the 
second j-bit in case the value is zero, and the third j-bit in case it is positive.  This gives 8 
possible jump conditions. 
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j1 
(out ) 0p

j2  
( )0=out

j3 
(out )0f Mnemonic Effect  

0 0 0 null no jump 
0 0 1 JGT if  jump 0fout
0 1 0 JEQ if 0=out  jump  
0 1 1 JGE if out  jump 0≥
1 0 0 JLT if  jump 0pout
1 0 1 JNE if 0≠out  jump 
1 1 0 JLE if 0≤out  jump 
1 1 1 JMP jump 

 
TABLE 7:  The "jump" specification of the C-instruction. Out refers to the value 
computed by the instruction’s comp part, and jump implies “continue execution 
with the instruction addressed by the A register”.  

 
The following example illustrates the jump commands in action: 
 

Logic Implementation 
if Memory[3]=5 then @3     

   goto 100 D=M    // D=Memory[3] 
else goto 200 @5     

 D=D-A  // D=D-5 
 @100   

 D;JEQ  // if D=0 goto 100 
 @200   

 0;JMP  // goto 200 
 
The last instruction (“0;JMP”) effects an unconditional jump.  Since the C-instruction syntax 
requires that we always effect some computation, we instruct the ALU to compute 0 (an arbitrary 
choice), which is ignored. 
 
Conflicting uses of the A register: As was just illustrated, the programmer can use the A register 
in order to select either a data memory location for a subsequent C-instruction involving M, or an 
instruction memory location for a subsequent C-instruction involving a jump. Thus, in order to 
prevent conflicting use of the A register, we require that in well written programs, a C-instruction 
that may cause a jump (i.e. with some non-zero j bits) should not contain a reference to M.  
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2.4 Symbols 
 
Assembly commands can refer to memory locations (addresses) using either constants or 
symbols.  Symbols are introduced into assembly programs in three ways: 

 Predefined symbols: A special subset of RAM (data memory) addresses can be referred 
to by any assembly program using pre-defined symbols, as follows. 

 Virtual registers: the symbols R0 to R15 are pre-defined to refer to RAM 
addresses 0 to 15, respectively. This syntactic convention is designed to simplify 
assembly programming.   

 VM pointers: the symbols SP, LCL, ARG, THIS, and THAT are pre-defined to refer 
to RAM addresses 0 to 4, respectively.  Note that each of these memory locations 
has two labels, e.g. address 2 can be referred to using either R2 or ARG.  This 
syntactic convention will come to play in the implementation of the virtual 
machine, discussed in Chapters 7 and 8.   

 I/O Pointers: the symbols SCREEN and KBD are pre-defined to refer to RAM 
addresses 16384 (0x4000) and 24576 (0x6000), respectively, which are the base 
addresses of the screen and keyboard memory maps.  The use of these I/O devices 
is explained below. 

 Label symbols: These user-defined symbols, which serve to label destinations of goto 
commands, are declared by the pseudo command “(Xxx)”.  This directive defines the 
symbol Xxx to refer to the instruction memory location holding the next command in the 
program.  A label can be defined only once and can be used anywhere in the assembly 
program, even before the line in which it is defined.  

 Variable symbols: Any user-defined symbol Xxx appearing in an assembly program that 
is not predefined and is not defined elsewhere using the “(Xxx)” command is treated as a 
variable, and is mapped by the assembler to an available RAM location.  Variables are 
mapped, as they are first encountered, to consecutive memory locations starting at RAM 
address 16 (0x0010).   

 
2.5 Input / Output Handling 
 
The Hack platform can be connected to two peripheral devices: a screen and a keyboard.  Both 
devices interact with the computer platform through memory maps.  This means that drawing 
pixels on the screen is achieved by writing binary values into a memory segment associated with 
the screen.  Likewise, “listening” to the keyboard is done by reading a memory location 
associated with the keyboard. The physical I/O devices and their memory maps are synchronized 
via continuous refresh loops. 
 
Screen:  The Hack computer can be connected to a black-and-white screen organized as 256 
rows of 512 pixels per row.  The screen’s contents are represented by an 8K memory map that 
starts at RAM address 16384 (0x4000). Each row in the physical screen, starting at the screen’s 
top left corner, is represented in the RAM by 32 consecutive 16-bit words.  Thus the pixel at row 
r from the top and column c from the left is mapped on the c%16 bit (counting from LSB to 
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MSB) of the word located at RAM[16384+r*32+c/16]. To write or read a pixel of the physical 
screen, one reads or writes the corresponding bit in the RAM-resident memory map (1=black, 
0=white).  Example: 
 

// Draw a single black dot at the top left corner of the screen: 
@SCREEN   // Set the A register to point to the memory word that is mapped  

       // to the 16 left-most pixels of the top row of the screen 
M=1       // Blacken the left-most pixel 

 
 
Keyboard: The Hack computer interfaces with the physical keyboard via a single-word memory 
map located in RAM address 24576 (0x6000).  Whenever a key is pressed on the physical 
keyboard, its 16-bit ASCII code appears in RAM[24576].  When no key is pressed, the code 0 
appears in this location.  In addition to the usual ASCII codes, the Hack keyboard recognizes the 
following keys: 

Key pressed Code  Key pressed Code 
new line 128  end 135 
backspace 129  page up 136 
left arrow 130  page down 137 
right arrow 131  insert 138 
up Arrow 132  delete 139 
down arrow 133  esc 140 
home 134  f1-f12 141-152 

 
TABLE 8:  Special keyboard codes in the Hack language 

 
2.6 Syntax Conventions and Files Format 
 
Binary code files: A binary code file is composed of text lines. Each line is a sequence of 16 “0” 
and “1” ASCII characters, coding a single machine language instruction.  Taken together, all the 
lines in the file represent a machine language program. The contract is such that when a machine 
language program is loaded into the computer’s instruction memory, the binary code represented 
by the file’s n-th line is stored in address n of the instruction memory (the count of both program 
lines and memory addresses starts at 0). 
 
By convention, machine language programs are stored in text files with a “hack” extension, e.g. 
Prog.hack.   
 
Assembly language files: By convention, assembly language programs are stored in text files 
with an “asm” extension, e.g. Prog.asm. An assembly language file is composed of text lines, 
each representing either an  instruction or a symbol declaration: 

 Instruction: an A-instruction or a C-instruction. 

 (Symbol): This pseudo-command causes the assembler to assign the label Symbol to 
the memory location into which the next command in the program will be stored.  It 
is called “pseudo-command” since it generates no machine code.  
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Constants and symbols in assembly programs: Constants must be non-negative and are always 
written in decimal notation. A user-defined symbol can be any sequence of letters, digits, 
underscore (“_”), dot (“.”), dollar sign (“$”), and colon (“:”) that does not begin with a digit. 
 
Comments in assembly programs: text beginning with two slashes (“//”) and ending at the end of 
the line is considered a comment and is ignored. 
 
White space in assembly programs: space characters are ignored.  Empty lines are ignored. 
 
Case conventions: All the assembly mnemonics must be written in upper-case.  The rest (user-
defined labels and variable names) is case sensitive.  The convention is to use upper-case for 
labels and lower-case for variable names. 
 
3. Perspective 
 
The Hack machine language is almost as simple as machine languages get.  Most computers 
usually have more instructions, more data-types, more registers, more instruction formats, and 
more addressing modes. At the same time, any feature not supported by the Hack machine 
language may still be implemented in software, at a performance cost.  For example, the Hack 
platform does not supply multiplication and division as machine-language operations.  Since 
these operations are obviously required by any high-level language, we will later implement them 
at the operating system level (Chapter 12). 
 
One of the main characteristics that give machine languages their particular flavor is the number 
of memory addresses that can appear in a single command.   In this respect, Hack may be 
described as a ½-address machine: we usually require two Hack instructions to perform an 
operation involving a single memory address: an A-instruction to specify the address, and a C-
instruction to specify the operation.  In comparison, most machine languages can directly specify 
at least one address in every machine instruction. 
 
In terms of assembly style, we have chosen to give Hack a somewhat different look-and-feel than 
the mechanical nature of most assembly languages.  In particular, we have chosen a high-level 
language-like syntax for the C-command, e.g. “D=M” and “D=D+M” instead of the more traditional 
“LOAD” and “ADD” commands, respectively.  The reader should note however that these are just 
syntactic details.  Further, one can design a macro-Hack language with commands like 
“D=M[address]”, “goto address”, and so on. These macro-commands can be easily 
translated by the assembler into the sequences “@address” followed by ”D=M” and “@address” 
followed by “0;jmp”, and so on.  
 
The assembler, which was mentioned several times in this chapter, is the program responsible for 
translating symbolic assembly programs into executable programs, written in binary code.  In 
addition, the assembler is responsible for managing all the system- and user-defined symbols 
found in the assembly program, and for replacing them with physical addresses of actual memory 
locations. We will return to this translation task in Chapter 7, in which we build an assembler for 
the Hack language.  But first, we have to complete the construction of the Hack hardware 
platform, a challenge that is taken up in the next chapter.  
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4. Build it 
 
Objective: To get a taste of low-level programming in machine language, and to get acquainted 
with the Hack computer platform.  In the process of working on this project, you will get a hands-
on understanding of the assembly process, and you will appreciate visually how the translated 
binary code executes on the target hardware. 
 
Resources: In this project you will use two main tools supplied with the book: an Assembler, 
designed to translate Hack assembly programs into binary code, and a CPU Emulator, designed 
to run binary programs on a simulated Hack platform. 
 
Contract: Write and test the two programs described below.  When executed on the CPU 
Emulator, your programs should generate the results mandated by the supplied test scripts. 
 
 Multiplication program (Mult.asm): The inputs of this program are the current values 

stored in R0 and R1 (i.e. the two top RAM locations). The program computes the product 
R0*R1 and stores the result in R2.  The algorithm can be iterative addition.  We assume (in 
this program) that R0 0, R1 0, and  R0*R1<32768. Your program need not test these 
conditions, but rather assume that they hold.  The supplied Mult.tst and Mult.cmp scripts 
will test your program on several representative data values. 

≥ ≥

 
 I/O-Handling Program (Fill.asm): This program runs an infinite loop that “listens” to the 

keyboard input. When a key is pressed (any key), the program blackens the screen, i.e. writes 
"black" in every pixel.  When no key is pressed, the screen should be cleared. You may 
choose to blacken and clear the screen in any order, as long as pressing a key continuously 
for long enough will result in a fully blackened screen and not pressing any key for long 
enough will result in a cleared screen.  Note: this program has a test script (Fill.tst) but 
no compare file – it should be checked by visibly inspecting the simulated screen. 

 
Steps: We recommend proceeding as follows: 

1. The Assembler and CPU Emulator programs needed for this project are available in the tools 
directory of the book software suite.  

2. Go through the Assembler Tutorial and the CPU Emulator Tutorial. 

3. Download the project4.zip file and extract its contents to a directory called project4 
on your computer.  This will create two directories called project4/mult and 
project4/fill. As a rule, all the files related to each program (.asm, .hack, .tst and 
.cmp) must be stored in the same directory.  

4. Use a text editor to write the first program in assembly, and save it as .../mult/Mult.asm. 

5. Use the supplied Assembler (in either batch or interactive mode) to debug and translate your 
program.  The result will be a binary file called Mult.hack. 

6. Use the supplied CPUemulator to test your Mult.hack code.  You can begin by loading 
Mult.hack into the simulator and testing it in interactive fashion.  Then load the supplied 
Mult.tst script into the simulator, and execute it in order to run our “certified test”.  

7. Repeat stages 4-6 for the second program (Fill.asm). 
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5. Computer Architecture 1 
 

“Make everything as simple as possible, but not simpler.”  
 

(Albert Einstein, 1879-1955) 
 
 
This chapter is the pinnacle of the "hardware" part of our journey.  We are now ready to take all 
the chips that we built in previous chapters, and integrate them into a general-purpose computer 
capable of running stored programs written in a machine language.  The specific computer that 
we will build, called Hack, has two important virtues.  On the one hand, Hack is a simple 
machine that can be constructed in just a few hours, using previously built chips and the supplied 
hardware simulator. On the other hand, Hack is sufficiently powerful to illustrate the key 
operating principles and hardware elements of any digital computer.  Therefore, building it will 
give you an excellent understanding of how modern computers work at the low hardware and 
software levels. 
 
Following an introduction of the stored program concept, Section 1 gives a detailed description 
of the von Neumann architecture -- a central dogma in computer science underlying the design of 
almost all modern computers.  The Hack platform is one example of a von Neumann machine, 
and Section 2 gives its exact hardware specification.  Section 3 describes how the Hack platform 
can be implemented from available chips, in particular the ALU built in Chapter 2 and the 
registers and memory systems built in Chapter 3.   
 
In the spirit of the opening quote of this chapter, the computer that will emerge from this 
construction will be as simple as possible, but not simpler.  This means that it will have the 
minimal configuration necessary to run interesting programs and deliver reasonable performance. 
The comparison of this machine to typical computers is taken up in Section 4, which emphasizes 
the critical role that optimization plays in the design of industrial-strength computers, but not in 
this chapter. As usual, the simplicity of our approach has a purpose: all the chips mentioned in the 
chapter, culminating in the Hack computer itself, can be built and tested on a personal computer, 
following the technical instructions given in the chapter’s last section.  The result will be a 
minimal yet surprisingly powerful computer. 
 
1. Background 
 
The Stored Program Concept 
 
Compared to all the other machines around us, the most unique feature of the digital computer is 
its amazing versatility.  Here is a machine with finite hardware that can perform a practically 
infinite array of tasks, from interactive games to word processing to scientific calculations. This 
remarkable flexibility -- a boon that we have come to take for granted -- is the fruit of a brilliant 
idea called the stored program concept.  Formulated independently by several mathematicians in 
the 1930s, the stored program concept is still considered the most profound invention in, if not 
the very foundation of, modern computer science. 

                                                 
1 From The Elements of Computing Systems, Nisan & Schocken, MIT Press, forthcoming in 2003, www.idc.ac.il/csd 
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Like many scientific breakthroughs, the basic idea is rather simple.  The computer is based on a 
fixed hardware platform, capable of executing a fixed repertoire of instructions.  At the same 
time, these instructions can be used and combined like building blocks, yielding arbitrarily 
sophisticated programs. Importantly, the logic of these programs is not embedded in the hardware 
platform, as it was in mechanical computers predating 1930.  Instead, the program’s code is 
stored and manipulated in the computer memory, just like data, becoming what is known as 
“software”.   Since the computer’s operation manifests itself to the user through the currently 
executing software, the same hardware platform can be made to behave completely differently 
each time it is loaded with a different program. 
 
The von-Neumann Architecture  
 
The stored program concept is a key element of many abstract and practical computer models, 
most notably the Universal Turing machine (1936) and the von Neumann machine (1945).  The 
Turing machine -- an abstract artifact describing a deceptively simple computer -- is used mainly 
to analyze the logical foundations of computer systems.  In contrast, the von Neumann machine is 
a practical architecture and the conceptual blueprint of almost all computer platforms today. 
 
The von Neumann architecture is based on a central processing unit (CPU), interacting with a 
memory device, receiving data from some input device, and sending data to some output device 
(figure 1).  At the heart of this architecture lies the stored program concept: the computer’s 
memory stores not only the data that the computer manipulates, but also the very instructions that 
tell the computer what to do.  We now turn to describe this architecture in some detail. 
 

Arithmetic Logic
Unit (ALU)

CPU

Registers

Control

Memory

(data
+

instructions)

Input
device

Output
device

 
 

FIGURE 1: The von-Neumann Architecture (conceptual), which, at this level of detail, 
describes the architecture of almost all digital computers.  The program that operates the 
computer resides in its memory, in accordance with the stored program concept. 

 
 
Memory 
 
The memory in a von-Neumann machine holds two types of information: data items and 
programming instructions.  The two types of information are usually treated differently, and in 
some computers are stored in separate memory units.  In spite of their different functions, both 
types of information are represented as binary numbers which are stored in the same generic 
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random-access structure: a continuous array of cells of some fixed width, also called words or 
locations, each having a unique address.  Hence, an individual word (representing either a data 
item or an instruction) is specified by supplying its address.   
 
Data Memory: High-level programs manipulate abstract artifacts like variables, arrays, and 
objects.  When translated into machine language, these data abstractions become series of binary 
numbers, stored in the computer’s data memory.  Once an individual word has been selected from 
the data memory by specifying its address, it can be either read or written to.  In the former case, 
we retrieve the word’s value.  In the latter case, we store a new value into the selected location, 
erasing the old value. 
 
Instruction memory:  High level programs use structured commands like while j<100 
{sum=sum+j}. When translated into machine language, such a command becomes a series of 
words, each representing a single machine language instruction.  These instructions are stored in 
the computer’s instruction memory.  In each step of the computer’s operation, the CPU fetches 
(i.e. reads) a word from the instruction memory, decodes it, executes the underlying instruction, 
and figures out which instruction to execute next.  Thus, changing the contents of the instruction 
memory has the effect of completely changing the computer’s operation.  
 
The instructions that reside in the instruction memory are written in an agreed upon formalism 
called machine language.  Using these instructions, the programmer can command the CPU to 
perform arithmetic and logic operations, fetch and store values from and to the memory, move 
values from one register to another, test Boolean conditions, and so on.  In some computers, the 
specification of each elementary operation (the operation code and the registers and/or memory 
locations on which it operates) is represented in one word.  Computers with a “thin” word-width 
(e.g. 16-bit) may split this specification over several words. 
 
Central Processing Unit 
 
The CPU -- the centerpiece of the computer’s architecture -- is in charge of executing the 
instructions of the currently loaded program. These instructions tell the CPU to carry out various 
calculations, to read and write values from and into the memory, and to conditionally jump to 
execute other instructions in the program. In order to execute these tasks, every CPU employs at 
least three hardware elements: an Arithmetic-Logic Unit, a set of registers, and a control unit. 
Arithmetic-Logic Unit: the ALU is built to perform all the low-level arithmetic and logical 
operations featured by the computer.  For instance, a typical ALU can add two numbers, test 
whether a number is positive, manipulate the bits in a word of data, and so on.   

Registers: The CPU is designed to carry out simple calculations, quickly.  In order to boost 
performance, the results of such calculations can often be stored locally, rather than shipped in 
and out of memory. Thus, every CPU is equipped with a small set of high-speed registers, each 
capable of holding a single word. 

Control unit: A computer instruction is represented as a binary code, typically 16- or 32-bits 
wide. Before such an instruction can be executed, it must be decoded, and the information 
embedded in it must be used to signal various hardware devices (ALU, registers, memory) how to 
execute the instruction.  The instruction decoding is done by the control unit, which is also 
responsible for figuring out which instruction to fetch and execute next. 
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The CPU operation can now be described as a repeated loop: fetch an instruction (word) from 
memory; decode it; execute it, fetch the next instruction, and so on. The instruction execution 
may involve one or more of the following micro tasks: have the ALU compute some value, 
manipulate internal registers, read a word from the memory, and write a word to the memory.  In 
the process of executing these tasks, the CPU also figures out which instruction to fetch and 
execute next, as we describe below. 
 
Registers 
 
Memory access is a slow process.  When the CPU is instructed to retrieve the contents of address 
j of the memory, the following process ensues: (a) j travels from the CPU to the RAM; (b) the 
RAM direct-access logic locates the memory register whose address is j; (c) the contents of 
RAM[j] travels back to the CPU.  Registers provide the same service -- data retrieval and storage 
-- without the round-trip travel and search expenses.  First, the registers reside physically inside 
the CPU chip, so accessing them is almost instantaneous. Second, there are typically only a 
handful of registers, compared to millions of memory cells.  Therefore, machine language 
instructions can specify which registers they want to manipulate using just a few bits, resulting in 
shorter instruction formats. 
 
Different CPUs employ different numbers of registers, of different types, for different purposes.  
In some computer architectures each register can serve more than one purpose: 

Data registers: These registers give the CPU short-term memory services. For example, when 
calculating the value of (a-b)*c where a, b and c are memory locations, we must first 
compute and remember the value of (a-b).  Although this result can be temporarily stored 
in some memory location, a better solution is to store it locally inside the CPU – in a data 
register.  

Addressing registers: The CPU has to continuously access the memory in order to read data and 
write data.  In every one of these operations, we must specify which individual memory 
word has to be accessed, i.e. supply an address.  In some cases this address appears as part 
of the current instruction, while in others it depends on the execution of a previous 
instruction. In the latter case, the address should be stored in a register whose contents can 
be later treated as a memory address -- an addressing register. 

Program Counter (PC) register: When executing a program, the CPU must always keep track 
of the address of the next instruction that must be fetched from the instruction memory.  
This address is kept in a special register called program counter, or PC.  The contents of 
the PC are then used as the address for fetching instructions from the instruction memory.   
Thus, in the process of executing the current instruction, the CPU updates the PC in one of 
two ways.  If the current instruction contains no “goto” directive, the PC is incremented to 
point to the next instruction in the program.  If the current instruction includes a “goto n” 
directive, the CPU loads n into the PC.   

 
Input and Output 
 
Computers interact with their external environments using a diverse array of input and output 
(I/O) devices.  These include screens, keyboards, printers, scanners, network interface cards, CD-
ROMs, etc., not to mention the bewildering array of proprietary components that embedded 
computers are called to control in automobiles, weapon systems, medical equipment, and so on. 
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There are two reasons why we will not concern ourselves here with the anatomy of these various 
devices.  First, every one of them represents a unique piece of machinery requiring a unique 
knowledge of engineering.  Second, and for this very same reason, computer scientists have 
devised various schemes to make all these devices look exactly the same to the computer.  The 
simplest trick in this art is called memory-mapped I/O. 
 
The basic idea is to create a binary emulation of the I/O device, making it “look” to the CPU like 
a normal segment of memory. In particular, each I/O device is allocated an exclusive area in 
memory, called its “memory map”.  In the case of an input device, the memory map is made to 
continuously reflect the physical state of the device; In the case of an output device, the memory 
map is made to continuously drive the physical state of the device.  When external events affect 
some input devices (e.g. pressing a key on the keyboard or moving the mouse), certain values are 
written in their respective memory maps.  Likewise, if we want to manipulate some output 
devices (e.g. draw some pixels on the screen or move a robotic arm), we write some values in 
their respective memory maps. From the hardware point of view, this scheme requires each I/O 
device to provide an interface similar to that of a memory unit.  From a software point of view, 
each I/O device is required to define an interaction contract – so that programs can access it 
correctly.  As a side comment, given the multitude of available computer platforms and I/O 
devices, one can appreciate the crucial role that standards play in computer architectures. 
 
We see that in a memory-mapped architecture, the design of the CPU and the overall platform 
can be totally independent of the number, nature, or make of the I/O devices that interact, or will 
interact, with the computer. Whenever we want to connect a new I/O device to the computer, all 
we have to do is allocate to it a new memory map and “take note” of its base address (these one-
time configuration tasks are typically done by the operating system). From this point onward, any 
program that wants to manipulate this I/O device can do so -- all it needs to do is manipulate bits 
in memory. 
 
2. The Hack Hardware Platform Specification 
 
2.1 Overview 
 
The Hack platform is a 16-bit Von Neumann machine, consisting of a CPU, two separate 
memory modules serving as instruction memory and data memory, and two memory-mapped I/O 
devices: a screen and a keyboard.   
 
The computer can only execute programs that reside in the instruction memory.  The instruction 
memory is a read-only device, and thus programs are loaded into it using some exogenous means.  
For example, the instruction memory can be implemented in a ROM chip which is pre-burned 
with the required program.  Loading a new program can be done by replacing the entire ROM 
chip. In order to simulate this operation, hardware simulators of the Hack platform must provide 
means for loading the instruction memory from a text file containing a program written in the 
Hack machine language.  (From now on, we will refer to the data memory and to the instruction 
memory as RAM and ROM, respectively.)  
 
The Hack CPU consists of the ALU specified in Chapter 2 and three registers called data register 
(D), address register (A), and program counter (PC). D and A are general-purpose 16-bit registers 
that can be manipulated by arithmetic and logical instructions like A=D-1, D=D|A, and so on, 
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following the Hack machine language specification (chapter 4).  While the D-register is used 
solely to store data values, the contents of the A-register can be interpreted in three different 
ways, depending on the instruction’s context: as a data value, as a RAM address, or as a ROM 
address. 
 
The Hack machine language is based on two 16-bit command types.  The address instruction has 
the format “0vvvvvvvvvvvvvvv” (each v is 0 or 1). This instruction causes the computer to 
load the 15-bit constant vvv...v into the A-register.  The compute instruction has the format 
“111accccccdddjjj”.  The a- and c-bits instruct the ALU which function to compute, the d-
bits instruct where to sore the ALU output, and the j-bits specify a jump condition, all according 
to the Hack machine language specification.  The computer is built in such a way that the 
program counter (PC) is connected to the address input of the ROM.  This way, the ROM always 
emits the contents of ROM[PC].  This value is called the current instruction.  The overall 
computer operation during each clock cycle is as follows: 
 
Execute: Parts of the current instruction are simultaneously fed to both the A-register and to the 

ALU.  If it’s an address instruction (most significant bit = 0), the A-register is set to the 15-
bit constant embedded in the instruction, and the instruction execution is over. If it’s a 
compute instruction (MSB=1), then the a- and c-bits tell the ALU which function to 
compute. The ALU output is then simultaneously routed to the A and D registers and to the 
RAM register currently addresses by A. Each one of these registers is equipped with a “load 
bit” that enables/disables it to incoming inputs.  These load bits, in turn, are connected to 
the three d-bits of the current instruction.  For example, “011” causes the machine to 
disable A, enable D, and enable RAM[A] to load the ALU output. 

 
Fetch: Which instruction to fetch next is determined by the three jump bits of the current 

instruction and by the ALU status output bits.  Taken together, these inputs determine if a 
jump should materialize.  If so, the program counter (PC) is set to the value of the A-
register; otherwise, the PC is incremented by 1.  In the next clock cycle, the instruction that 
the program counter points at emerges from the ROM’s output, and the cycle continues.   
We see that the PC!A setting causes the program flow to branch to the location specified 
by A, whereas the PC!PC+1 setting causes the program flow to continue with the next 
instruction in the program.   

 
We now turn to formally specify the Hack hardware platform.  Before starting, we wish to point 
out that most of this platform can be assembled from previously built components. The CPU is 
based on the Arithmetic-Logic Unit built in Chapter 2.  The registers and the program counter are 
identical copies of the 16-bit register and 16-bit counter, respectively, built in chapter 3.  
Likewise, the ROM and the RAM chips are versions of the memory units built in Chapter 3.  
Finally, the screen and the keyboard devices will interface with the hardware platform through 
memory maps, implemented as built-in chips that have the same interface as RAM chips. 
 
2.2 Central Processing Unit 
 
The CPU of the Hack platform is designed to execute 16-bit instructions according to the Hack 
machine language specified in Chapter 4.  It expects to be connected to two separate memory 
modules: an instruction memory, from which it fetches instructions for execution, and a data 



Chapter 5: Computer Architecture                                                                                                           7           
 

` 

memory, from which it can read, and into which it can write, data values.  Diagram 2 gives the 
specification details. 
 

instruction

inM

16

1

15

15

16 outM

16

writeM

addressM

pc
reset

1

C
PU

to data
memory

to instruction
memory

from
data

memory

from
instruction

memory

 
 
Chip Name: CPU               // Central Processing Unit 

Inputs:    inM[16],          // input from data memory (M) 

instruction[16],  // instruction from instruction memory 

reset             // signals whether to re-start the current 
                  // program (reset=1) or continue executing 
                  // the current program (reset=0) 

Outputs:   outM[16],         // output to data memory (M) 

writeM,           // write-enable the data memory  

addressM[15],     // address in data memory (of M) 

pc[15]            // address of next instruction 

Function: Executes the inputted instruction according to the Hack machine 
language specification. The D and A in the language 
specification refer to CPU-resident registers, while M refers 
to the external memory location addressed by A, i.e. to 
Memory[A]. The inM input holds the value of this location. 

If the current instruction needs to write a value to M, the 
address of the target location is placed in the addressM 
output, the value is placed in outM, and the writeM control bit 
is asserted. (When writeM=0, any value may appear in outM). 

The outM and writeM outputs are combinational: they are 
affected instantaneously by the execution of the current 
instruction.  The addressM and pc outputs are clocked: although 
they are affected by the execution of the current instruction, 
they commit to their new values only in the next time unit. 

If reset=1 then the CPU jumps to address 0 (i.e. sets pc=0 in 
next time unit) rather than to the address resulting from 
executing the current instruction. 

 
 

DIAGRAM 2: The Central Processing Unit. This CPU can be built from the ALU 
and the registers built in Chapters 2 and 3, respectively. 
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2.3 Instruction Memory 
 
The Hack instruction memory is implemented in a direct-access Read-Only Memory device, also 
called “ROM”.  The Hack ROM consists of 32K addressable 16-bit registers:   
 

out

15 16

address
ROM32K

 
 

Chip Name: ROM               // 16-bit read-only 32K memory 

Input:     address[15]       // Address in the ROM 

Output:    out[16]           // Value of ROM[address] 

Function: out=ROM[address]  // 16-bit assignment 

Comment: The ROM is pre-loaded with a machine language 
program.  Simulators must supply a mechanism for 
loading a program into the ROM. 

 
DIAGRAM 3: Instruction Memory. 

 
 
2.4 Data Memory  
 
Hack's data memory chip has the interface of a typical RAM device, like those built in Chapter 3 
(see for example figure 3-3).  To read the contents of register j, we put j in the memory’s 
address input and probe the memory’s out output. This is a combinational operation, 
independent of the clock.  To write a value v into register j, we put v in the in input, j in the 
address input, and assert the memory’s load bit.  This is a sequential operation, and so register 
n will commit to the new value v in the next clock cycle. 
 
In addition to serving as the computer’s general-purpose data store, the data memory also 
interfaces between the CPU and the computer’s input/output devices, using memory maps. 
 
Memory Maps:  In order to facilitate interaction with a user, the Hack platform can be 
connected to two peripheral devices: screen and keyboard.  Both devices interact with the 
computer platform through memory-mapped buffers. Specifically, screen images can be drawn 
and probed by writing and reading, respectively, words in a designated memory segment called 
screen memory map.  Similarly, one can check which key is presently pressed on the keyboard by 
probing a designated memory word called keyboard memory map.  The memory maps interact 
with their respective I/O devices via peripheral logic that resides outside the computer.  The 
contract is as follows: whenever a bit is changed in the screen's memory map, a respective pixel is 



Chapter 5: Computer Architecture                                                                                                           9           
 

` 

drawn on the physical screen.  Whenever a key is pressed on the physical keyboard, the 
respective code of this key is stored in the keyboard's memory map.   
 
We first specify the built-in chips that interface between the hardware interface and the I/O 
devices, and then the complete memory module that embeds these chips. 
 
Screen:  The Hack computer can be connected to a black-and-white screen organized as 256 
rows of 512 pixels per row.  The computer interfaces with the physical screen via a memory map, 
implemented by a chip called Screen.  This chip behaves like regular memory, meaning that it 
can be read and written to.  In addition, it features the side effect that any bit written to it is 
reflected as a pixel on the physical screen (1=black, 0=white).   The exact mapping between the 
memory map and the physical screen coordinates is given in the chip API. 
 

Chip Name: Screen       // memory-map of the physical screen 

Inputs:    in[16],      // what to write 

load,        // write-enable bit 

address[13]  // where to write 

Output:    out[16]      // screen value at the given address 

Function: Functions exactly like a 16-bit 8K RAM: 

1. out(t)=Screen[address(t)](t) 

2. If load(t-1) then Screen[address(t-1)](t)=in(t-1) 

(t is the current time-unit, or cycle) 

Comment: Has the side effect of refreshing a 256 by 512 black-
and-white screen (simulators must simulate this 
service).  Each row in the physical screen is 
represented by 32 consecutive 16-bit words, starting 
with the top left corner of the screen.  Thus the pixel 
at row r from the top and column c from the left 
(0<=r<=255, 0<=c<=511) reflects the c%16 bit (counting 
from LSB to MSB) of the word found in Screen[r*32+c/16].  

 
DIAGRAM 4: Screen interface 
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Keyboard: The Hack computer can be connected to a standard keyboard, like that of a personal 
computer. The computer interfaces with the physical keyboard via a chip called Keyboard. 
Whenever a key is pressed on the physical keyboard, its 16-bit ASCII code appears as the output 
of the Keyboard chip.  When no key is pressed, the chip outputs 0.  In addition to the usual 
ASCII codes, the chip recognizes, and responds to, the keys listed in table 5. 
 

Key 
pressed 

Keyboard 
Output 

 Key 
pressed 

Keyboard 
Output 

new line 128  end 135 
backspace 129  page up 136 
left arrow 130  page down 137 
right arrow 131  insert 138 
up Arrow 132  delete 139 
down arrow 133  esc 140 
home 134  f1-f12 141-152 

 
TABLE 5:  Special keyboard keys  

 
 

Chip Name: Keyboard     // Memory map of the physical keyboard. 
             // Outputs the code of the currently 
             // pressed key. 

Output:    out[16]      // The ASCII code of the pressed key, or 
             // one of the special codes listed in 
             // Table 4-11, or 0 if no key is pressed. 

Function: Outputs the code of the key presently pressed on the 
physical keyboard. 

Comment: This chip is continuously being refreshed from a physical 
keyboard unit (simulators must simulate this service). 

 
DIAGRAM 6: Keyboard interface 

 
Now that we’ve described the internal parts of the data memory, we are ready to specify the 
entire data memory address space. 
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Overall Memory: The overall address space of the Hack platform (i.e. its data memory) is 
provided by a chip called Memory.  The memory chip includes the RAM (for regular data 
storage) and the screen and keyboard memory maps.  These modules reside in a single address 
space that is partitioned into four sections: 
 

• Addresses          0-16383  (0x0000-0x3FFF):    Regular RAM (16K); 
• Addresses  16384-24575  (0x4000-0x5FFF):    Screen memory map (8K); 
• Address                 24576  (0x6000):                  Keyboard memory map (1 word); 
• Addresses  24577-32767  (0x6001-0x7FFF):   Unused segment. 

 
load

out

in

16

15

16

RAM
(16K)

address

0x0000

0X3FFF

screen
memory map

(8K)

0x4000

0x5FFF

0x6000
keyboard

memory map

Data Memory

Keyboard

screen

 
 

Chip Name: Memory       // complete memory address space 

Inputs:    in[16],      // what to write 

load,        // write-enable bit 

address[15]  // where to write 

Output:    out[16]      // Memory value at the given address 

Function: 1. out(t)=Memory[address(t)](t) 

2. If load(t-1) then Memory[address(t-1)](t)=in(t-1) 

(t is the current time-unit, or cycle) 

Comment: Access to address>0x6000 is invalid.  Access to any 
address in the range 0x4000–0x5FFF results in 
accessing the screen memory map.  Access to address 
0x6000 results in accessing the keyboard memory map.  
The behavior in these addresses is described in the 
Screen and Keyboard specifications. 

 
DIAGRAM 7: Data Memory. 
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2.5 Computer  
 
The top-most chip in the Hack hardware hierarchy is a complete computer system designed to 
execute programs written in the Hack machine language.  This Computer chip contains all the 
hardware devices necessary to operate the computer, including a CPU, a data memory, an 
instruction memory (ROM), a screen, and a keyboard, all implemented as internal parts.  In order 
to execute a program, the program’s code must be pre-loaded into the ROM. Control of the 
screen and the keyboard is achieved via their memory maps, as described in their specifications. 
 

Computer
reset

Keyboard

screen

 
 

Chip Name: Computer  // top-most chip in the Hack platform 

Input:    reset  

Function: When reset is 0, the program stored in the 
computer's ROM executes.  When reset is 1, the 
execution of the program restarts. Thus, to start 
a program’s execution, reset must be pushed “up” 
(1) and “down” (0). 

Depending on the program's code, the screen will 
show some output and the user will be able to 
interact with the computer via the keyboard. 

From this point onward the user is at the mercy 
of the person or company who wrote the software. 

 
DIAGRAM 8: Computer. Top-most chip of the Hack hardware platform.   
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3. Implementation 
 
This section gives general guidelines on how the Hack platform can be built to deliver the various 
services described in its specification (Section 2).  As usual, we don't give exact building 
instructions, since we expect readers to come up with their own designs.  All the chips can be 
built in HDL and simulated on a personal computer using the hardware simulator that comes with 
the book.  As usual, technical details are given in the final "Build It" section (section 5). 
 
Since most of the action in the Hack platform occurs in its Central Processing Unit, the main 
implementation challenge is building the CPU.  The construction of the rest of the computer is 
straightforward. 
 
3.1 The Central Processing Unit 
 
The CPU implementation objective is to create a logic gate architecture capable of executing a 
given Hack instruction and fetching the next instruction to be executed.  Naturally, the CPU will 
include an ALU capable of executing Hack instructions, a set of registers, and some control logic 
designed to fetch and decode instructions.  Since almost all these hardware elements were 
already built in previous chapters, the key question here is how to connect them in order to effect 
the desired CPU operation.  One possible solution is illustrated in diagram 9.  
 

AL
U

M
U

X

D

M
U

X

reset

inM

addressM

pc

outM

A/Minstruction

decode

C

C

C

C

C

D

A

PC

C

C

A

A

A

M

ALU output

writeMC

C

 
DIAGRAM 9: Proposed CPU Implementation. The diagram shows only data and 
address paths, i.e. wires that carry data and addresses from one place to another.  The 
diagram does not show the CPU’s control logic, except for inputs and outputs of control 
bits, labeled ©.  Thus it should be viewed as an incomplete chip diagram. 
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The key element missing in diagram 9 is the CPU’s control logic.  The control logic is a rather 
simple set of gates and wires designed to perform three tasks:  

" Instruction decoding: Figure out what the instruction means 
(a function of the instruction); 

" Instruction execution: Signal the various parts of the computer what they  
should do in order to execute the instruction (a function of the instruction); 

" Next Instruction fetching: Figure out which instruction to execute next 
(a function of the instruction and the ALU output).  

 
(in what follows, the term "proposed CPU implementation" refers to diagram 9).   
 
Instruction decoding: The 16-bit word located in the CPU’s instruction input can represent 
either an A-instruction or a C-instruction.  In order to figure out what this 16-bit word means, it 
can be broken into the fields "i xx a cccccc ddd jjj".  The i-bit codes the instruction type, 
which is “0” for an A-instruction and “1” for a C-instruction. In case of a C-instruction, the a-bit 
and the c-bits represent the comp part, the d-bits represent the dest part, and the j-bits 
represent the jump part of the instruction.   In case of an A-instruction, the 15 bits other than the 
i-bit should be interpreted as a 15-bit constant. 
 
Instruction execution: The various fields of the instruction (i-, a-, c-, d-, and j-bits) are routed 
simultaneously to various parts of the architecture, where they cause different chips to do what 
they are supposed to do in order to execute either the A-instruction or the C-instruction, as 
mandated by the machine language specification.  In particular, the a-bit determines whether the 
ALU will operate on the A register or on the Memory, the c-bits determine which function the 
ALU will compute, and the d-bits enable various locations to accept the ALU result. 
 
Next instruction fetching: As a side effect of executing the current instruction, the CPU also 
determines the address of the next instruction and emits it via its pc output.  The “seat of control” 
of this task is the program counter -- an internal part of the CPU whose output is fed directly to 
the CPU’s pc output.  This is precisely the PC chip built in chapter 3 (see figure 3-5). 
 
Most of the time, the programmer wants the computer to fetch and execute the next instruction in 
the program.  Thus if t is the current time-unit, the default program counter operation should be 
PC(t)=PC(t-1)+1. When we want to effect a "goto n" operation, the machine language 
specification requires to first set the A register to n (via an A-instruction) and then issue a jump 
directive (coded by the j-bits of a subsequent C-instruction).  Hence, our challenge is to come up 
with a hardware implementation of the following logic: 
  

if jump(t) then PC(t)=A(t-1) 

else PC(t)=PC(t-1)+1 
 
Conveniently, and actually by careful design, this jump control logic can be easily effected by the 
proposed CPU implementation.  Recall that the PC chip interface (figure 3-5) has a “load“ 
control bit that enables it to accept a new input value.  Thus, to effect the desired jump control 
logic, we start by connecting the output of the A register to the input of the PC.  The only 
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remaining question is when to enable the PC to accept this value (rather than continuing its 
steadfast counting), i.e. when does a jump need to occur.  This is a function of two signals: (a) the 
j-bits of the current instruction, specifying on which condition we are supposed to jump, and (b) 
the ALU output status bits, indicating whether the condition is satisfied.  Taken together, the j-bits 
and the ALU output status determine whether a jump needs to occur.  If we have a jump, the PC 
must be loaded with A’s output.  If we don’t have a jump, the PC should increment by 1.  
 
Additionally, if we want the computer to re-start the program’s execution, all we have to do is 
reset the program counter to 0.  That’s why the proposed CPU implementation feeds the CPU’s 
reset input directly into the reset input of the PC chip. 
 
3.2 Memory  
 
According to its specification, the Memory chip of the Hack platform is essentially a package of 
three lower-level chips: RAM16K, Screen, and Keyboard.  At the same time, users of the 
Memory chip must see a single logical address space, spanning from location 0 to 24576 
(0x0000 to 0x6000 - see diagram 7).  The implementation of the Memory chip should create 
this continuum effect.  This can be done by the same technique used to combine small RAM 
units into larger RAM units, as we have done in Chapter 3 (see figure 3-6 and the discussion of 
n-registers memory). 
 
3.3 Computer 
 
Once the CPU and the Memory chips have been implemented and tested, the construction of the 
overall computer is straightforward.  Diagram 10 depicts a possible implementation. 
 

Data
Memory

(Memory)

instruction

C
PU

Instruction
Memory

(ROM32K)

inM

outM

addressM

writeM

pc

reset  
 

DIAGRAM 10: Proposed implementation of the top-most Computer chip.  
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4. Perspective 
 
Following the general spirit of the book, the architecture of the Hack computer is rather simple 
and minimal. Typical computer platforms have more registers, more data types (rather than 16-bit 
integers only), more powerful ALU’s, and more elaborate instruction sets.  However, these 
differences are mainly quantitative.  From a qualitative standpoint, Hack is quite similar to most 
digital computers, as they all follow the same design paradigm: the von Neumann architecture. 
 
In terms of function, computer systems can be classified into two categories: general-purpose 
computers, designed to easily switch from executing one program to another, and dedicated 
computers, which are typically embedded in other systems like cell-phones, game-consoles, 
appliances, various automobile and airline control systems, factory equipment, and so on.  
General-purpose computers typically store data and instructions in the RAM, and are able to load 
programs dynamically into memory.  In contrast, dedicated computers typically store software in 
a ROM unit: for any particular application, a single program is burned into the ROM, and is the 
only one executed by the embedded computer (for example, in game consoles the game software 
resides in an external cartridge which is simply a ROM chip encased in some fancy package).  In 
that regard, Hack is similar to a dedicated computer.  It should be noted however that general 
purpose and dedicated computers share the same architectural ideas: stored programs, fetch-
decode-execute logic, CPU, registers, program counter, and so on. 
 
In a similar fashion, Hack’s I/O devices are as simple as possible (but not simpler).  In principle, 
a computer can be connected to many I/O devices: printers, hard disks, digital cameras, network 
connections, etc.  Also, typical screens are obviously much more powerful than the Hack screen, 
featuring more pixels, many brightness levels in each pixel, and colors.  Still, the basic principle 
that each pixel is controlled by a memory-resident binary value is maintained: instead of a single 
bit controlling the pixel’s black/white color,  a number of bits is typically devoted to control the 
level of brightness of each of the three primary colors that, together,  effect the pixel’s ultimate 
color. 
 
Likewise, the memory mapping of the Hack screen is very simplistic.  Instead of mapping pixels 
directly into bits of memory, most modern computers employ more indirect memory maps.  In 
particular, they allow the CPU to send higher-level graphic instructions to a graphics card that 
controls the screen. 
 
Finally, it should be stressed that most of the effort and creativity in designing computer 
hardware is aimed at achieving better performance.  Thus, hardware architecture courses evolve 
around such issues as implementing memory hierarchies (cache), better access to I/O devices, 
pipelines, parallelism, instruction pre-fetching, and other optimization techniques.  Historically, 
the attempts to enhance the processor’s performance have led to two main schools of hardware 
design.  Advocates of the CISC (Complex Instruction Set Computer) approach argue for 
achieving better performance by providing as rich and powerful instruction sets as possible.  At 
the same time, the RISC (Reduced Instruction Set Computer) camp uses simpler instruction sets 
in order to promote as fast a hardware implementation as possible.  The Hack computer does not 
enter this debate, featuring neither a strong instruction set nor special hardware acceleration 
techniques.   
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5. Build It 
 
Objective: Build the Hack computer platform, culminating in the top-most Computer chip.  The 
only building blocks that you can use are the chips described in this chapter and in previous 
chapters, and chips that you may build on top of them. 
 
Resources: The tools that you need for completing this project are the hardware simulator 
supplied with the book and the test scripts described below.  The computer platform should be 
implemented in the HDL language specified in appendix A. 
 
Contract: The computer platform that you build should be capable of executing programs 
written in the Hack machine language specified in Chapter 4.  Demonstrate this capability by 
having your Computer chip run the three programs given below. 
 
Testing: As was just said, a natural way to test your overall Computer chip implementation is to 
have it execute some sample programs written in the Hack language.  In order to run such a test, 
one can write a test script that loads the Computer chip into the simulator, loads a program from 
an external text file into its ROM32K chip, and then runs the clock enough cycles to execute the 
program. We supply all the files necessary to run three such tests, as follows: 
 
" Add.hack: this program adds the two constants 2 and 3 and writes the result in 

RAM[0]. Test scripts: ComputerAdd.tst, ComputerAdd.cmp. 

" Max.hack: this program computes the maximum of RAM[0] and RAM[1] and writes 
the result in RAM[2]. Test scripts: ComputerMax.tst, ComputerMax.cmp. 

" Rect.hack:  this program draws a rectangle of width 16 pixels and length RAM[0] at 
the top left of the screen.  Test scripts: ComputerRect.tst, ComputerRect.cmp.    

Before testing your Computer chip on the above programs, read the relevant .tst file and be 
sure that you understand the instructions given to the simulator.  Section 8 of Appendix B may be 
a useful reference here. 
 
Tips: In addition to all the files necessary to test the three programs mentioned above, we supply 
test scripts and compare files for testing the Memory and CPU chips.  It’s important to complete 
the testing of these chips before you set out to build and test the overall Computer chip. 
 
Build the computer in the following order: 
 
" Memory: Composed from three chips: RAM16K, Screen, and Keyboard.  The Screen and 

the Keyboard are available as built-in chips and there is no need to build them.  The 
RAM16K chip was built in chapter 3.  We recommend using its built-in version, as it provides 
a debugging-friendly GUI. 

" CPU: Can be composed according to the proposed implementation given in diagram 9, using 
the ALU and register chips built in Chapters 2 and 3, respectively.  We recommend using the 
built-in versions of these chips, in particular ARegister and DRegister. These chips have 
exactly the same functionality of the Register chip specified in chapter 3, plus GUI side 
effects. 
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In the course of implementing the CPU, it is allowed to specify and build some internal chips 
of your own.  This is up to you.  If you choose to create new chips not mentioned in the book, 
be sure to document and test them carefully before you plug them into the architecture.  

" Instruction Memory: Use the built-in ROM32K chip. 

" Computer: The top-most Computer chip can be composed from the chips mentioned above, 
using diagram 10 as a blueprint. 

 
Steps: 
 

1. Create a directory called project5 on your computer; 
2. Download the project5.zip file and extract it to your project5 directory; 
3. Build and test the chips in the order mentioned above. 
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6. The Assembler1 
 
1. Introduction 
 
Work in progress. 
 
2. Hack Assembly-to-Binary Translation Specification 
 
This section gives a complete specification of the translation between the symbolic Hack 
assembly language to its equivalent binary representation. Unlike the language description given 
in chapter 4, this specification is both compact and formal.  Therefore, it can be viewed as the 
contract that Hack assemblers must implement, in one way or another. 
 
2.1 Syntax Conventions and Files Format 
 
File names: By convention, programs in binary machine code and in assembly code are stored in 
text files with “hack” and “asm” extensions, respectively.  Thus, a Prog.asm file is translated 
into a Prog.hack file. 
 
Binary code (.hack) files: A binary code file is composed of text lines. Each line is a sequence of 
16 “0” and “1” ASCII characters, coding a single 16-bit machine language instruction.  Taken 
together, all the lines in the file represent a machine language program. When a machine 
language program is loaded into the computer’s instruction memory, the binary code represented 
by the file’s n-th line is stored in address n of the instruction memory (the count of both program 
lines and memory addresses starts at 0). 
 
Assembly language (.asm) files: An assembly language file is composed of text lines, each 
representing either an instruction or a symbol declaration: 

 Instruction: an A-instruction or a C-instruction, described below. 

 (Symbol): This pseudo-command binds the Symbol to the memory location into 
which the next command in the program will be stored.  It is called “pseudo-
command” since it generates no machine code.  

 
Constants and symbols in assembly programs: Constants must be non-negative and are always 
written in decimal notation. A user-defined symbol can be any sequence of letters, digits, 
underscore (“_”), dot (“.”), dollar sign (“$”), and colon (“:”) that does not begin with a digit. 
 
Comments in assembly programs: text beginning with two slashes (“//”) and ending at the end of 
the line is considered a comment and is ignored. 
 
White space in assembly programs: space characters are ignored.  Empty lines are ignored. 
 

                                                 
1 From The Elements of Computing Systems, Nisan & Schocken, MIT Press, forthcoming in 2003, www.idc.ac.il/csd 
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Case conventions: All the assembly mnemonics must be written in upper-case.  The rest (user-
defined labels and variable names) is case sensitive.  The convention is to use upper-case for 
labels and lower-case for variable names. 
 
2.2 Instructions 
 
The Hack machine language consists of two instruction types called addressing instruction (A-
instruction) and compute instruction (C-instruction).  The instructions format is as follows: 
 

value (v = 0 or 1)

0 v v v v v v v v v v v v v v vBinary:

A-instruction: @value          // Where value is either a non-negative decimal number
                        //  or a symbol referring to such number.

 
 
 

jumpdestcomp

1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

dest=comp;jump  // Either the dest or jump fields may be empty.
                                         //  If dest is empty, the "=" is ommitted;
                                        //  If jump is empty, the ";" is omitted.

C-instruction:

Binary:
 

 
The translation of each of the three fields comp, dest, jump of the C-instruction to their binary 
forms is specified in the following three tables. 
 

comp(a=0) c1 c2 c3 c4 c5 c6 comp(a=1) 
0 1 0 1 0 1 0  
1 1 1 1 1 1 1  

-1 1 1 1 0 1 0  
D 0 0 1 1 0 0  
A 1 1 0 0 0 0 M 

!D 0 0 1 1 0 1  
!A 1 1 0 0 0 1 !M 
-D 0 0 1 1 1 1  
-A 1 1 0 0 1 1 -M 

D+1 0 1 1 1 1 1  
A+1 1 1 0 1 1 1 M+1 
D-1 0 0 1 1 1 0  
A-1 1 1 0 0 1 0 M-1 
D+A 0 0 0 0 1 0 D+M 
D-A 0 1 0 0 1 1 D-M 
A-D 0 0 0 1 1 1 M-D 
D&A 0 0 0 0 0 0 D&M 
D|A 0 1 0 1 0 1 D|M 
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 dest d1 d2 d3  jump j1 j2 j3 
null 0  0 0 null 0 0 0 
M 0 0 1 JGT 0 0 1 
D 0 1 0 JEQ 0 1 0 
MD 0 1 1 JGE 0 1 1 
A 1 0 0 JLT 1 0 0 
AM 1 0 1 JNE 1 0 1 
AD 1 1 0 JLE 1 1 0 
AMD 1 1 1 

 

JMP 1 1 1 
 
2.3 Symbols 
 
Hack assembly commands can refer to memory locations (addresses) using either constants or 
symbols.  Symbols can be introduced into assembly programs in three ways: 

Predefined symbols: Any Hack assembly program is allowed to use the following pre-defined 
symbols: 

Label RAM address (hexa) 
SP                0 0x0000 
LCL                1 0x0001 
ARG                  2 0x0002 
THIS                3 0x0003 
THAT                4 0x0004 
R0-R15           0-15 0x0000-f 
SCREEN        16384 0x4000 
KBD        24576 0x6000 

 
Note that each one of the 5 top RAM locations can be referred to using two pre-defined symbols. 
For example, either R2 or ARG can be used to refer to RAM[2]. 

Label symbols: The pseudo-command “(Xxx)” defines the symbol Xxx to refer to the 
instruction memory location holding the next command in the program.  A label can be defined 
only once and can be used anywhere in the assembly program, even before the line in which it is 
defined.  

Variable symbols: Any user-defined symbol Xxx appearing in an assembly program that is not 
predefined and is not defined elsewhere using the “(Xxx)” command is treated as a variable. 
Variables are mapped to consecutive memory locations as they are first encountered, starting at 
RAM address 16 (0x0010).   
 
 
2.4 Example 
 
In chapter 4 we presented a program that sums up the numbers between 1 and 100.  Program 1 
repeats this example, showing both its assembly and binary version. 
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Assembly code  Binary code 

// sum the numbers 1...100  (this line should be erased) 
      @i     // i=1 (allocated at 0x0010)   0000 0000 0001 0000 
      M=1                                 1110 1111 1100 1000 
      @sum   // sum=0 (allocated at 0x0011)  0000 0000 0001 0001 
      M=0                                   1110 1010 1000 1000 
(loop)        (this line should be erased) 
      @i     // if i-100>0 then goto end     0000 0000 0001 0000 
      D=M                                   1111 1100 0001 0000 
      @100                                  0000 0000 0110 0100 
      D=D-A                                 1110 0100 1101 0000 
      @end                                  0000 0000 0001 0010 
      D;jgt                                 1110 0011 0000 0001 
      @i     // sum+=i                       0000 0000 0001 0000 
      D=M                                   1111 1100 0001 0000 
      @sum                                  0000 0000 0001 0001 
      M=D+M                                 1111 0000 1000 1000 
      @i     // i++                          0000 0000 0001 0000 
      M=M+1                                 1111 1101 1100 1000 
      @loop  // goto loop                    0000 0000 0000 0100 
      0;jmp                                 1110 1010 1000 0111 
 (end)  (this line should be erased) 

 
PROGRAM 1: Assembly and binary representations of the same program. If the 
assembler is given the text file on the left, it should generate the text file given on the right. 

 
 
3. Implementation 
 
The previous section gave a complete specification of the Hack language, in both its assembly 
and binary versions. The program that translates assembly programs into binary programs 
according to this contract is called the Hack assembler.  This section describes a  proposed design 
for this assembler. 
 
The assembler reads as input a text file named Prog.asm, containing an assembly program, and 
produces as output a text file named Prog.hack, containing the translated machine code.  The 
name of the input file is supplied to the assembler as a command line argument: 
 

prompt> Assembler Prog 
 
The translation of each individual assembly command to its equivalent binary instruction is direct 
and one-to-one.   Each command is translated separately.  In particular, each mnemonic 
component (field) of the command is translated into its corresponding bit-code according to the 
tables in section 2.2, and each symbol in the command is resolved to its numeric address as 
explained in section 2.3. 
We propose an assembler implementation based on four modules: a Parser module that parses 
the input, a Code module that provides the binary codes for different mnemonics, a 
SymbolTable module that handles symbols, and a main program that drives the entire 
translation process. 
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3.1 The Parser 
 
The main function of the parser is to break each assembly command into its underlying 
components (fields and symbols).  The API is as follows. 

 

Parser Module 

Encapsulates access to the input code.  Reads an assembly language command, parses it, and provides 
convenient access to the command's components (fields and symbols).  In addition, removes all white 
space and comments. 

Routine Arguments Returns Function 
Constructor 
(initializer) 

Input file 
(stream) 

-- Opens the input file/stream and gets ready to 
parse it. 

hasMoreCommands -- boolean Are there more assembly language commands 
in the input? 

advance -- -- Reads the next command from the input and 
makes it the current command.  Should be 
called only if hasMoreCommands() is 
true.  Initially there is no current command 

commandType -- Enumeration: 

• A_COMMAND

• C_COMMAND

• L_COMMAND

Returns the type of the current command: 

• C_COMMAND for dest=comp;jump 
• A_COMMAND for @Xxx where Xxx is 

either a symbol or a decimal number 
• L_COMMAND (actually, pseudo-

command) for (Xxx) where Xxx is a 
symbol. 

symbol -- string Returns the symbol or decimal Xxx of the 
current command @Xxx or (Xxx). Should be 
called only when commandType() is 
A_COMMAND or L_COMMAND. 

dest -- string 

 

Returns the dest mnemonic in the current 
C-command.  The 8 possible mnemonics are 
given in section 2.2. Should be called only 
when commandType() is C_COMMAND. 

comp -- string Returns the comp mnemonic in the current 
C-command.  The 28 possible mnemonics are 
given in section 2.2. Should be called only 
when commandType() is C_COMMAND. 

jump -- string Returns the jump mnemonic in the current 
C-command.  The 8 possible mnemonics are 
given in section 2.2. Should be called only 
when commandType() is C_COMMAND. 
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3.2 The Code Module 
 
The Code module translates Hack mnemonics into their respective binary codes. The details are 
given in the following API. 

Code Module 

Translates Hack assembly language mnemonics into binary codes. 

Routine Arguments Returns Function 

dest string mnemonic 3 bits Returns the 3-bit binary code of the dest 
mnemonic, as listed in section 2.2. 

comp string mnemonic 7 bits Returns the 7-bit binary code of the comp 
mnemonic, as listed in section 2.2. 

jump string mnemonic 3 bits Returns the 3-bit binary code of the jump 
mnemonic, as listed in section 2.2. 

 
 
3.3 Assembler for programs with no symbols 
 
We suggest building the rest of the assembler in two stages.  In the first stage, write an assembler 
that translates assembly programs without symbols. This can be done using the Parser and Code 
modules just described.  In the second stage, extend the assembler with symbol handling 
capabilities, as we explain in the next section. 
 
The contract for the first symbol-less stage is that the input Prog.asm program contains no 
symbols.  This means that (a) in all address commands of type “@Xxx” the Xxx constants are 
decimal numbers and not symbols, and (b) the file contains no label commands, i.e. no 
commands of type “(Xxx)”.  
 
The overall symbol-less assembler program can now be implemented as follows.   First, the 
program opens an output file named Prog.hack.  Next, the program marches through the lines 
(assembly instructions) in the supplied Prog.asm file.  For each C-instruction, the program 
concatenates the translated binary codes of the instruction fields into a single 16-bit word.  Next, 
the program writes this word into the Prog.hack file.  For each A-instruction of type @Xxx, the 
program translates the decimal constant returned by the parser into its binary representation and 
writes the resulting 16-bit word it into the Prog.hack file. 
 
3.3 The SymbolTable Module 
 
Since Hack instructions are allowed to use symbols, the symbols must be resolved as part of the 
translation process.  The assembler deals with this task using a symbol table, designed to create 
and maintain the correspondence between symbols and their meaning. 
 
The symbol table is a data structure that contains pairs of symbols and their corresponding 
semantics, which in our case are RAM and ROM addresses.  In general, the most appropriate data 
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structure for representing such a relationship is the classical hash table.  In many programming 
environments, such a data structure is available as part of a standard library, and thus there is no 
need to develop it from scratch.  We propose the following API. 
 
SymbolTable Module 

A symbol table that keeps a correspondence between symbolic labels and numeric addresses. 

Routine Arguments Returns Function 

Constructor -- -- Creates a new empty symbol table 

addEntry string symbol,  
int address --  Adds the pair (symbol, address) to the 

table. 

contains string symbol boolean Does the symbol table contain the given 
symbol? 

addressOf string symbol int Returns the address associated with the symbol.  
 
 
3.5 Assembler for programs with symbols 
 
Once we have a symbol table in place, the handling of symbols in the translation process is 
straightforward. Whenever we encounter a new symbol in the program, we allocate a numeric 
address to it, and add the pair (symbol, address) to the table.  To translate an instruction that 
includes a symbol into binary code, we simply look-up the symbol in the symbol table, retrieve 
its numeric address, and plant it in the translated instruction. This symbol handling capability is 
all we need to complete the assembler’s implementation 
 
There’s one complication though: in assembly programs, label symbols (used in goto commands) 
are often used before they are defined.  One common solution is to write a 2-pass assembler that 
reads the code twice, from start to end.  In the first pass, the symbol table is built and no code is 
generated.  In the second pass, all the label symbols encountered in the program have already 
been bound to memory locations.  Thus, in the second pass the assembler can replace them with 
their corresponding meanings (numbers) in order to generate the final binary code. 
 
Recall that there are three types of symbols in the Hack language: pre-defined symbols, labels, 
and variables.  The symbol table should contain and handle all these symbols, as follows: 
 
Initialization: Initialize the symbol table with all the pre-defined symbols and their pre-allocated 
RAM addresses, according to Section 2.2.  
 
First pass: Go through the entire assembly program, line by line, and build the symbol table 
without generating any code. As you march through the program lines, keep a running number 
anticipating the ROM address that will eventually be allocated to the current command.  This 
number starts at 0 and is incremented by 1 whenever a C-instruction or an A-instruction is 
encountered, but does not change when a label pseudo-command or a comment is encountered.  
Each time a pseudo command “(Xxx)” is encountered, add a new entry to the symbol table, 
associating Xxx with the ROM address that will eventually store the next command in the 
program. 
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This pass results in entering all the program’s labels along with their ROM addresses into the 
symbol table.  The program’s variables are handled in the second pass. 
 
Second pass: Now go again through the entire program, and parse each line. Each time a 
symbolic A-instruction is encountered, i.e. “@Xxx” where Xxx is a symbol and not a number, look 
up Xxx in the symbol table.  If the symbol is found in the table, replace it with its numeric 
meaning and complete the command’s translation.  If the symbol is not found in the table, then it 
means that it represents a new variable.  Hence, allocate the next available RAM address to it, say 
n, add the pair (Xxx, n) to the symbol table, and complete the command’s translation.  The 
allocated RAM addresses are running, starting at address 16 (just after the addresses allocated to 
the pre-defined symbols). 
 
This completes the assembler’s implementation. 
 
 
4. Perspective 
 
Work in Progress. 
 
 
5. Build it 
 
Objective: To develop an assembler that translates programs written in Hack assembly language 
into the binary code understood by the Hack hardware platform.  The assembler must implement 
the Translation Specification described in Section 2. 
 
Resources: The only tool needed for completing this project is the programming language in 
which you will implement your assembler. You may also find the following two tools useful: the 
assembler and CPU Emulator supplied with the book. These tools allow you to experiment with a 
working assembler before you set out to build one yourself. In addition, the supplied assembler 
provides a visual line-by-line translation GUI, and allows online code comparisons with the 
outputs that your assembler will generate.  For more information about these capabilities, refer to 
the supplied Assembler Tutorial. 
 
Contract: When loaded into your assembler, a Prog.asm file containing a Hack assembly 
language program should be translated into the correct Hack binary code and stored in a 
Prog.hack file.  The output produced by your assembler must be identical to the output 
produced by the assembler supplied with the book. 
 
Testing: We suggest building the assembler in two stages.  First write a symbol-less assembler, 
i.e. an assembler that can only translate programs that contain no symbols.  Then extend your 
assembler with symbol handling capabilities.  The test programs that we supply for this project 
come in two such versions (without and with symbols), to help you test your assembler 
incrementally. 
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Test Programs 
 
Each test program, except the first one, comes in two versions: ProgL.xxx is symbols-less, and 
Prog.xxx is with symbols. 

Add:  This program adds the constants 2 and 3 and puts the result in R0. 

Max:  This program performs the operation R2=max(R0,R1). 

Rect:  This program draws a rectangle at the top left corner of the screen.  The rectangle is 16 
pixels wide and R0 pixels high. 

Pong: A single-player Ping-Pong game. A ball bounces constantly off the screen's “walls.”  The 
player attempts to hit the ball with a bat by pressing the left and right arrow keys.  For 
every successful hit, the player gains one point and the bat shrinks a little to make the 
game harder. If the player misses the ball, the game is over.  To quit the game, press ESC. 

The Pong program was written in the Jack programming language (described in Chapter 
9) and translated by the Jack compiler (described in Chapters 10-11) into the supplied 
assembly program.  The resulting machine-level program is about 20,000 lines of code, 
which also include the Sack operating system (described in Chapter 12).  Running this 
game in the CPU Emulator is a slow affair, so don't expect a high-powered Pong game.  
This slowness is actually a virtue, since it enables your eye to track the graphical behavior 
of the program.  In future projects in the book this game will run much faster.  

 
Steps:  We recommend proceeding in the following order: 

1. Download project6.zip and extract its contents into a directory called project6 on 
your computer, without changing the directories structure embedded in the zip file. 

2. Write and test your assembler program in the two stages described above.  You may use 
the assembler supplied with the book to compare the output of your assembler to the 
correct output.  This can be done by treating the .hack file generated by your assembler 
as the compare file used by the supplied assembler.  For more information about the 
supplied assembler, go through the Assembler Tutorial. 
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7. The Virtual Machine I: Stack Arithmetic1 

 
Programmers are creators of universes for which they alone are responsible.  

Universes of virtually unlimited complexity can be created 
in the form of computer programs. 

(Joseph Weizenbaum, Computer Power and Human Reason, 1974) 
 

 
This chapter describes the first steps toward building a compiler for a typical object-based high-
level language.  We will approach this substantial task in two stages, each spanning two chapters 
in the book.  High-level programs will be first translated into an intermediate code (Chapters 10-
111), and the intermediate code will then be translated into machine language (Chapters 7-8).  
This two-tier translation model is a rather old idea that recently made a significant comeback 
following its adoption by modern languages like Java. 
 
The basic idea is as follows: instead of running on a real platform, the intermediate code is 
designed to run on a Virtual Machine (VM) -- an abstract computer that does not exist for real.  
There are many reasons why this idea makes sense, one of which being code transportability. 
Since the VM may be implemented with relative ease on multiple target platforms, it allows 
running software on many processors and operating systems without having to modify the 
original source code.  The VM implementation can be done in several ways, by software 
interpreters, by special purpose hardware, or by translating the VM programs into the machine 
language of the target platform. 
 

A virtual machine can be described as a set of virtual memory segments and an associated 
language for manipulating them.  This chapter presents a typical VM architecture, modeled after 
the Java Virtual Machine (JVM) paradigm. As usual, we focus on two perspectives. First, we 
will describe, illustrate, and specify  the VM abstraction.  Next, we will implement it over the 
Hack platform.  Our implementation will entail writing a program called VM Translator, 
designed to translate VM code into Hack assembly code. The software suite that comes with the 
book illustrates yet another implementation vehicle, called VM Emulator.  This program 
implements the VM by emulating it on a standard personal computer.  
 

The VM language that we present consists of four types of commands: arithmetic, memory 
access, program flow, and subroutine-calling commands.  We will split the implementation of 
this language into two parts, each covered in a separate project.  In this chapter we will build a 
basic VM translator, capable of translating the VM’s arithmetic and memory access commands 
into Hack code. In the next chapter we will extend the basic translator with program flow and 
subroutine-calling functionality.  The result will be a full-scale virtual machine that will serve as 
the backend of the compiler that we will build in chapters 10-11.  
 

                                                 
1 From The Elements of Computing Systems, Nisan & Schocken, MIT Press, forthcoming in 2003, www.idc.ac.il/csd 
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The virtual machine that will emerge from this effort illustrates many important ideas in 
computer science.  First, the notion of having one computer emulating another is a fundamental 
idea in the field, tracing back to Alan Turing in the 1930’s.  Over the years it had many practical 
implications, e.g. using an emulator of an old generation computer running on a new platform in 
order to achieve upward code compatibility.   More recently, the virtual machine model became 
the centerpiece of two well-known mainstreams -- the Java architecture and the .NET 
infrastructure. These software environments are rather complex, and one way to gain an inside 
view of their underlying structure is to build a simple version of their VM cores, as we do here.   
 
Another important topic embedded in this chapter is stack processing.  The stack is a fundamental 
data structure that comes to play in many computer systems and algorithms.  In particular, the 
VM presented in this chapter is stack-based, providing a working example of the elegance and 
power of this remarkably versatile data structure.  As the chapter unfolds we will describe and 
illustrate many classical stack operations, and then implement them in our VM translator.  
 
1. Background 
 
The Virtual Machine Paradigm 
 
Before a high-level program can run on a target computer, it must be translated into the 
computer’s machine language.  This translation -- known as compilation -- is a rather complex 
process.  Normally, a separate compiler is written specifically for any given pair of high-level 
language and target machine language.  This leads to a proliferation of many different compilers, 
each depending on every detail of both its source and destination languages.  One way to 
decouple this dependency is to break the overall compilation process into two nearly separate 
stages.  In the first stage, the high-level program is parsed and its commands are translated into 
“primitive” steps -- steps that are neither “high” nor “low”.  In the second stage, the primitive 
steps are actually implemented in the machine language of the target hardware. 
 
This decomposition is very appealing from a software engineering perspective: the first stage 
depends only on the specifics of the source high-level language, and the second stage only on the 
specifics of the target machine language.  Of course, the interface between the two compilation 
stages -- the exact definition of the intermediate primitive steps -- must be carefully designed.  In 
fact, this interface is sufficiently important to merit its own definition as a stand-alone language 
of an abstract machine.  Specifically, one formulates a virtual machine whose instructions are the 
primitive steps into which high-level commands are decomposed.  The compiler that was 
formerly a single monolithic program is now split into two separate programs.  The first program, 
still termed compiler, translates the high-level code into intermediate virtual machine 
instructions, while the second program translates this VM code into the machine language of the 
target platform. 
 
This two-stage compilation model has been used by many compiler writers, in one way or 
another.  Some developers went as far as defining a formal virtual machine language, most 
notably the p-code generated by several Pascal compilers in the 1970s and the bytecode language 
generated by Java compilers.  More recently, the approach has been adopted by Microsoft, whose 
.NET infrastructure is also based on an intermediate language, running on a virtual machine 
called CLR. 
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Indeed, the notion of an explicit and formal virtual machine language has several practical 
advantages.  First, compilers for different target platforms can be obtained with relative ease by 
replacing only the virtual machine implementation (sometimes called the compiler’s “backend”).  
This, in turn, allows the VM code to become transportable across different hardware platforms, 
permitting a range of implementation tradeoffs between code efficiency, hardware cost, and 
programming effort.  Second, compilers for many languages can share the same VM “backend”, 
allowing code re-use and language inter-operability.   For example, some high-level languages 
are good at handling the GUI, while others excel in scientific calculations. If both languages 
compile into a common VM language, it is rather natural to have routines in one language call 
routines in the other, using an agreed-upon invocation syntax. 
 
Another virtue of the virtual machine approach is modularity.   Every improvement in the 
efficiency of the VM implementation is immediately inherited by all the compilers above it.  
Likewise, every new digital device or appliance which is equipped with a VM implementation 
can immediately gain access to a huge base of available software. 
 

. . .
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FIGURE 1: The virtual machine paradigm. Once a high-level program is compiled into VM code, 
the program can run on any hardware platform equipped with a suitable VM implementation.  In 
this chapter we will start building the VM implementation on the Hack Platform, and use a VM 
emulator like the one depicted on the right.  (The Jack language is introduced in chapter 9). 

 
 

 



Chapter 7:  The Virtual Machine I                                                                                                             4     
              
The Stack Machine Model 
 
A virtual machine can be described as a set of virtual memory segments and an associated 
language for manipulating them.  Like other languages, the VM language consists of arithmetic, 
memory access, program flow, and subroutine calling operations. There are several possible 
software paradigms on which to base such a virtual machine architecture. One of the key 
questions regarding this choice is where will the operands and the results of the VM operations 
reside? Perhaps the cleanest solution is to put them on a stack data structure. 
 
In a stack machine model, arithmetic commands pop their operands from the top of the stack and 
push their results back onto the top of the stack.  Other commands transfer data items from the 
stack's top to designated memory locations, and vice versa. Taken together, these simple stack 
operations can be used to implement the evaluation of any arithmetic or logical expression. 
Further, any program, written in any programming language, can be translated into an equivalent 
stack machine program.  One such stack machine model is used in the Java Virtual Machine as 
well as in the VM described and built in this chapter. 
 
Elementary Stack Operations: A stack is an abstract data structure that supports two basic 
operations: push and pop.  The push operation adds an element to the “top” of the stack; the 
element that was previously on top is pushed “below” the newly added element.  The pop 
operation retrieves and removes the top element; the element just “below” it moves up to the top 
position. Thus the stack implements a last-in-first-out (LIFO) storage model.  This basic anatomy 
is illustrated in Figure 2. 
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FIGURE 2: Stack processing example, illustrating the two elementary operations push and pop.  
Following convention, the stack is drawn upside down, as if it grows downward. The location just 
after the top position is always referred to by a special pointer called sp, or stack pointer.  The 
labels a and b refer to two arbitrary memory addresses.  
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We see that stack access differs from conventional memory access in several respects.  First, the 
stack is accessible only from the top, one item at a time.  Second, reading the stack is a lossy 
operation: the only way to retrieve the top value is to remove it from the stack.  In contrast, the 
act of reading a value from a regular memory location has no impact on the memory’s state.  
Finally, writing an item onto the stack adds it to the stack’s top, without changing the rest of the 
stack.  In contrast, writing an item into a regular memory location is a lossy operation, since it 
erases the location’s previous value. 
 
The stack data structure can be implemented in several different ways.  The simplest approach is 
to keep an array, say stack, and a stack pointer variable, say sp, that points to the available 
location just above the “topmost” element.  The push x command is then implemented by storing 
x at the array entry pointed by sp and then incrementing sp (i.e. stack[sp]=x; sp=sp+1).  The 
pop operation is implemented by first decrementing sp and then returning the value stored in the 
top position (i.e. sp=sp-1; return stack[sp]). 
 
As usual in computer science, simplicity and elegance imply power of expression.  The simple 
stack model is an extremely useful data structure that comes to play in many computer systems 
and algorithms.  In the virtual machine architecture it serves two main purposes.  First, it is used 
for handling all the arithmetic and logical operations of the VM.  Second, it facilitates function 
calls and dynamic memory allocation -- the subjects of the next chapter. 
 
Stack Arithmetic: Stack-based arithmetic is a simple matter: the two top elements are popped 
from the stack, the required operation is performed on them, and the result is pushed back onto 
the stack.  For example, here is how addition is handled: 
 

SP
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9

17
4
5

SP

 
+

 
 
It turns out that every arithmetic expression -- no matter how complex -- can be easily converted 
into, and evaluated by, a sequence of simple operations on a stack.  For example, consider the 
expression d=(6–4)*(8+1), taken from some high-level program.  The stack-based evaluation 
of this expression is shown in Figure 3. 
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FIGURE 3: Stack-based evaluation of arithmetic expressions. 
This example evaluates the expression  “d=(6–4)*(8+1)”  

 
In a similar fashion, every logical expression can also be converted into, and evaluated by, a 
sequence of simple stack operations.  For example, consider the high-level command “if (x<7) 
or (y=8) then …”.  The stack-based evaluation of this expression is shown in Figure 4.  
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FIGURE 4: Stack-based evaluation of logical expressions. 
This example evaluates the expression  “if (x<7) or (y=8) then ...” 

 
To sum up, the above examples illustrate a general observation: any arithmetic and Boolean 
expression can be transformed into a series of elementary stack operations that compute its value.  
Further, as we will show in Chapter 9, this transformation can be described systematically.  Thus, 
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one can write a compiler program that translates high-level arithmetic and Boolean expressions 
into sequences of stack commands.  Yet in this chapter we are not interested in the compilation 
process, but rather in its results – i.e. the VM commands that it generates.  We now turn to 
specify these commands (section 2), illustrate them in action (section 3), and describe their 
implementation on the Hack platform (section 4). 
 
 
2. VM Specification, Part I 
 
2.1 General 
 
The virtual machine is stack-based: all operations are done on a stack.  It is also function-based: a 
complete VM program is composed of a collection of functions, written in the VM language.  
Each function has its own stand-alone code and is separately handled.  The VM language has a 
single 16-bit data type that can be used as an integer, a Boolean, or a pointer. The language 
consists of four types of commands: 
 
 Arithmetic commands perform arithmetic and logical operations on the stack; 
 Memory access commands transfer data between the stack and virtual memory segments; 
 Program flow commands facilitate conditional and unconditional branching operations; 
 Function calling commands call functions and return from them. 

 
Building a virtual machine is a complex undertaking, and so we divide it into two stages.  In this 
chapter we specify the arithmetic and memory access commands, and build a basic VM translator 
that implements them only.  The next chapter specifies the program flow and function calling 
commands, and extends the basic translator into a full-blown virtual machine implementation. 
 
Program and command structure: A VM program is a collection of one or more files with a 
.vm extension, each consisting of one or more functions. From a compilation standpoint, these 
constructs correspond, respectively, to the notions of program, class, and method in an object-
oriented language. 
 
Within a .vm file, each VM command appears in a separate line, and in one of the following 
formats: <command>, <command arg>, or  <command arg1 arg2>, where the arguments are 
separated from each other and from the command part by an arbitrary number of spaces. “//” 
comments can appear at the end of any line and are ignored.  Blank lines are permitted. 
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2.2 Arithmetic and logical commands 
 
The VM language features nine stack-oriented arithmetic and logical commands.  Seven of these 
commands are binary: they pop two items off the stack, compute a binary function on them, and 
push the result back onto the stack.  The remaining two commands are unary: they pop a single 
item off the stack, compute a unary function on it, and push the result back onto the stack.  We 
see that each command has the net impact of replacing its operand(s) with the command's result, 
without affecting the rest of the stack.  Table 5 gives the details. 
 

Command Return value (after popping the operand/s) Comment  
add x+y integer addition (2's complement) 
sub x-y integer subtraction (2's complement)  
neg –y arithmetic negation  (2's complement) 
eq true if x=y and false otherwise equality  

gt true if x>y and false otherwise greater than 

lt true if x<y and false otherwise less than 

and x and y bit-wise 

or x or y bit-wise 

not not y bit-wise 

 

SP

...
x
y

 
      

TABLE 5: Arithmetic and Logical stack commands.  Throughout the table, y refers to 
the item at the top of the stack and x refers to the item just below it. 

 
Three of the commands listed in Table 5 (eq, gt, lt) return Boolean values.  The VM represents 
true and false as -1 (minus one, 0xFFFF) and 0 (zero, 0x0000), respectively. 
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Example: Figure 6 illustrates all the VM arithmetic commands in action.  Each command is 
applied to an arbitrary 4-bit stack, showing the stack's state before and after the operation.  We 
focus on the three top-most cells in the stack, noting that the rest of the stack is never affected by 
the current command. 
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FIGURE 6: Arithmetic commands examples.  
 
 
 
2.3 Memory Access Commands 
 
Unlike real computer architectures, where the term “memory” refers to a collection of physical 
storage devices, the “memory” of a virtual machine consists of abstract devices. In particular, the 
VM manipulates eight memory segments, listed in Table 7. VM functions can access these 
memory segments explicitly, using VM commands.   In addition, the VM manages the stack, but 
only implicitly.  In other words, although the stack proper is not mentioned in VM commands, 
the state of the stack changes in the background, as a side effect of other commands. 
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Another memory element that exists in the background is the heap.  As we elaborate later in the 
chapter, the heap is an area in the physical RAM where objects and arrays are stored.  These 
objects and arrays can also be manipulated by VM commands, as we will see shortly. 
  
Memory Segments: Each VM function sees the eight memory segments described in Table 7. 
 

Segment Purpose Comments 
argument Stores the function’s arguments. Allocated dynamically by the VM 

implementation when the function is entered.

local Stores the function’s local variables. Allocated dynamically by the VM 
implementation when the function is entered. 

static Stores static variables shared by all 
functions in the same .vm file. 

Allocated by the VM implementation for 
each file; Seen by all functions in the file.  

constant Pseudo-segment that holds all the 
constants in the range 0...32767.   

Emulated by the VM implementation;  
Seen by all the functions in the program.   

this 
that 
 

General-purpose segments that can be 
made to correspond to different areas in 
the heap. Serve various programming 
needs. 

Any VM function can bind these segments to 
any area on the heap by setting the segment’s 
base.  The setting of the segment’s base is 
done through the pointer segment.  

pointer Fixed 2-entry segment that holds the base 
addresses of this and that. 

May be set by the VM program to bind this
and that to various areas in the heap. 

temp Fixed 8-entry segment that holds 
temporary variables for general use. 

May be used by the VM program for any 
purpose. 

 
TABLE 7: The memory segments seen by every VM function. 

 
Six of the virtual memory segments have a fixed purpose, and their mapping onto the host RAM 
is controlled by the VM implementation.  In contrast, the this and that segments are general 
purpose and their mapping on the host RAM can be controlled by the current VM program: 
pointer 0 controls the base of the this segment and pointer 1 controls the base of the 
that segment. 

Memory access commands: There are two memory access commands: 

• push segment index push the value of segment[index] onto the stack; 

• pop segment index pop the topmost stack item and store its value in segment[index]. 

Where segment is one of the eight segment names and index is a non-negative integer. 
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The stack: Consider the commands sequence “push argument 2” followed by “pop local 
1”.  This code will end up storing the value of the function’s 3rd argument in its 2nd local variable 
(each segment’s index starts at 0).  The working memory of these commands is the stack:  the 
data value did not simply jump from one segment to another -- it went through the stack.  Yet in 
spite of its central role in the VM architecture, the stack proper is never mentioned in the VM 
language. In addition, although every memory access operation involves the stack, individual 
stack elements cannot be accessed directly, except for the topmost element.   
 
2.4 Program flow commands 
 

• label symbol  // label declaration 
• goto symbol   // unconditional branching 
• if-goto symbol  // conditional branching 

 
These commands are discussed in the next chapter, and are listed here for completeness. 
 
2.5 Function calling commands 
 

• function functionName nLocals // function declaration;  must include  
                                                          // the number of the function’s local variables 

• call functionName nArgs  // function invocation; must include 
      // the number of the function’s arguments 

• return    // transfer control back to the calling function 
 
Where functionName is a symbol and nLocals and nArgs are non-negative integers.  These 
commands are discussed in the next chapter, and are listed here for completeness. 
 
2.6 The big picture 
 
We end the first part of the VM specification with a “big picture” view of the overall translation 
process, from a high-level program into machine code.  At the top of Figure 9 we see a Jack 
program, consisting of two classes (Jack is a Java-like language that will be introduced in chapter 
9).  Each class consists of several methods.  When the Jack compiler is applied to the directory in 
which these classes reside, it produces two VM files.  In particular, each method in the high-level 
source code translates into one function at the VM level. 
 
Next, the figure shows how the VM Translator can be applied to the directory in which the VM 
files reside, generating a single assembly program.  This low-level program does two main 
things. First, it emulates all the virtual memory segments shown in the figure, as well as the 
implicit stack.  Second, it effects the VM commands on the target platform.  This is done by 
manipulating the emulated VM data structures using machine language instructions.  If 
everything works well, i.e. if the compiler and the VM translator are implemented correctly, the 
target platform will end up effecting the behavior mandated by the original Jack program.  
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FIGURE 9: VM translation: the big picture. 
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3. VM Programming Examples 
 
We now turn to illustrate the VM architecture, language, and programming style in action.  We 
give three examples: (i) a typical arithmetic task, (ii) typical handling of object fields, and (iii) 
typical handling of array elements. 
 
It’s important to note at the outset that VM programs are rarely written by human programmers, 
but rather by compilers.  Therefore, it is instructive to begin each example with a high-level 
version of the program, and then track down its translation it into VM code.  We use a C-style 
syntax for all the high-level examples.  
 
3.1 A Typical Arithmetic Task 
 
Consider the multiplication algorithm shown at the top of Program 10. How should we (or more 
likely, the compiler) express this algorithm in the VM language? Well, given the primitive nature 
of the VM commands, we must think in terms of simple "goto logic," resulting in the “first 
approximation” version of Program 10. Next, we have to express this logic using a stack-oriented 
formalism.  It is instructive to carry out this translation in two stages, beginning with a symbolic 
pseudo version of the VM language.  Finally, we replace the symbols in the pseudo code with 
virtual memory locations, leading to the actual VM program.  (The exact semantics of the VM 
commands function, label, goto, if-goto, and return are described in chapter 8, but their 
intuitive meaning is self-explanatory.) 
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High-Level Code (C style) 
int mult(int x,int y) { 
  int sum,j; 
  sum=0; 
  for(int j=y; j!=0; j--) 
      sum+=x;  // repetitive addition  

  return sum; 

} 

 
First approximation  Pseudo VM code  Final VM code 
function mult   function mult(x,y)    function mult 2     // 2 local variables
  args x,y     push 0     push constant 0   

  vars sum,j     pop sum     pop local 0      // sum=0 
  sum=0     push y     push argument 1   

  j=y     pop j     pop local 1      // j=y 
loop:  label loop  label loop 

  if j==0 goto end     push 0     push constant 0   

  sum=sum+x     push j     push local 1 

  j=j-1     eq     eq 

  goto loop     if-goto end     if-goto end      // if j==0 goto end 
end:     push sum     push local 0      

  return sum     push x     push argument 0 

     add     add 

     pop sum     pop local 0      // sum=sum+x 
     push j     push local 1      

     push 1     push constant 1 

     sub     sub 

     pop j     pop local 1      // j=j-1 
     goto loop     goto loop 

  label end  label end 
     push sum     push local 0      

     return     return           // return sum 

 
Just before mult(7,3) returns:

x
y

Run-time example: Just after mult(7,3) is entered:

(The symbols x,y,sum,j are not part of the VM!  They are shown here only for ease of reference)

SP
SP 217

3
0

argument

1
2

...

sum
j

0
0

0

local

1
2

...

stack stack

 
 

PROGRAM 10: VM programming example. 
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We end this example with two observations.  First, let us focus on the figure at the bottom of 
Program 10.  We see that when a VM function starts running, it assumes that (i) the stack is 
empty, (ii) the argument values on which it is supposed to operate are located in the argument 
segment, and (iii) the local variables that it is supposed to use are initialized to 0 and located in 
the local segment.  Second, let us focus on the translation from the pseudo code to the final 
code.  Recall that VM commands are not allowed to use symbolic argument and variable names -
- they are limited to making <segment index> references only.  However, the translation from the 
former to the latter is straightforward.  All we have to do is represent x, y, sum and j as 
argument 0, argument 1, local 0 and local 1, respectively, and replace all their 
symbolic occurrences in the pseudo code with corresponding <segment index> references. 
 
To sum up, when a VM function starts running, it assumes that it is surrounded by a private 
world, all of its own, consisting of initialized argument and local segments and an empty 
stack, waiting to be manipulated by its commands.  The agent responsible for building this world 
for every VM function just before it starts running is the VM implementation, as we will see in 
the next chapter. 
 
3.2 Object handling 
 
High-level object-oriented programming languages are designed to handle complex variables 
called objects.  Technically speaking, an object is a bundle of variables (also called fields, or 
properties), with associated code, that can be treated as one entity. For example, consider an 
animation program designed to juggle balls on the screen.  Suppose that each Ball object is 
characterized by the integer fields x, y, radius, and color.  Let us assume that the program has 
created one such Ball object, and called it b.  What will be the internal representation of this 
object in the computer? 
 
Like all other objects, it will end up on an area in the RAM called heap.  In particular, whenever 
a program creates a new object using a high-level command like b=new Ball(...), the 
compiler computes the object's size (in terms of words) and the operating system finds and 
allocates enough RAM space to store it in the heap.  The details of memory allocation and de-
allocation will be discussed later in the book.  For now, let us assume that our b object has been 
allocated RAM addresses 3012 to 3015, as shown in Program 11. 
 
Suppose now that a certain function in the high-level program, say resize, takes a Ball object 
and an integer r as arguments, and, among other things, sets the ball's radius to r.  The function 
and its VM translation are given in Program 11. 
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120
80
50radius:

b=new Ball(120,80,50,3)

x:
y:

3color:

120
80
50

3012
3013
3014

33015

b object

19 3012
...

...

High level program view
RAM view

 
memory

allocation

(by the compiler
and the O/S)

0
...

b:

(The RAM locations
of the b pointer and
the b object are
arbitrary examples.)

 
High-level code  VM code 
resize (Ball b,int r) { // b.radius=r 
  ... push argument 0   //  get b's base address 
    b.radius=r; pop pointer 0     // point the this segment to b 
  ... push argument 1   // get r's value 
} pop this 2        // set b's third field to r 
 ... 

 
 

0
1
2

0
1

Just after resize(b,17) is entered:

Just after setting b's radius to 17:

SP

...

stack

3012
17

0
1
2

SP

stack argument pointer this

... ...

120
80
17

0
1
2

30120
1

70

3012
17

0
1
2

argument pointer this

...

3012
3013
3014
30153

push

pop

push

pop

Run-time simulation (example):

 
 

PROGRAM 11: VM-based object manipulation.  (The labels at the bottom right 
(3012, ...) are not part of the VM state, and are given here for ease of reference.) 

 
Note that the name of the object (which happens to be “b” in this example) is actually a reference 
to a memory cell containing the address 3012 (see Program 11).  Since b is the first argument 
passed to the resize method, the compiler will treat it as the 0th argument of the translated VM 
function.  Hence, when we set pointer 0 to the value of this argument, we are effectively 
setting the base of the VM's this segment to address 3012.  From this point on, VM commands 
can access any field in the heap-resident b object using the virtual memory segment this, 
without ever worrying about the physical address of the actual object. 
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3.3 Array Handling 
 
An array is an indexed vector of objects of the same type. Suppose that a high-level program has 
created an array of 10 integers called xxx, and proceeded to fill it with some 10 constants.  Let us 
assume that the array's base has been mapped on RAM address 4315 in the heap. Suppose now 
that a certain method in the high-level program, say foo, takes an array as a parameter, and, 
among other things, sets its k-th element to 34, where k is one of the method's local variables.   
 
In the C language, this operation can be specified using two forms of syntax: xxx[k]=34, and 
*(xxx+k)=34.  Whereas the former expression is more intuitive for humans, the latter provides 
a more accurate description of what the machine is actually doing under the surface.  Specifically, 
the C notation “*x” means “the contents of the memory location addressed by x”.  Hence, the 
command “*(xxx+k)=34” reads: “set the RAM location whose address is (xxx+k) to 34”.  As 
shown in Program 12, this is precisely what the VM code is doing, using primitive VM 
commands. 
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7
53

1212

xxx array

0
1

8

7
53

121

4315
4316
4317

8

4324

xxx array

...

...

...
19

High-level program view

199

3
4318...

 
memory

allocation

(by the compiler
and the O/S)

21 4315

RAM view
0

...
(The RAM locations
of the xxx pointer
and the xxx array are
arbitrary examples.)

xxx:

 
 

High-level code  VM code 
method foo (int[] xxx, ...) { ... 

   int i,k; push constant 3    // set k=3 
   ... pop  local 1 

        k=3; push argument 0    // get xxx's base address 
   xxx[k]=34; push local 1       // get k 
   ... add                // put xxx+k on the stack 
} pop  pointer 1     // set that’s base to (xxx+k) 
 push constant 34 

 pop  that 0        // *(xxx+k)=34 
 ... 

 

0
1

i
k

Just after the k=3 operation: Just after the xxx[k]=34 operation:

4318

43150
1
2

argument

...
pointer

4318
0
1

43150
1
2

argument

...

pointer

0
3

0
1

local

...

0
1
2

that

...

that

2

i
k

0
3

0
1

local

...
2

340
1
2

...

Run-time simulation (example):

 
 

PROGRAM 12: VM-based array manipulation.  (The symbolic and numeric labels shown in 
the right are not part of the VM state, and are given here for ease of reference.) 
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4. Implementation 
The virtual machine that was described up to this point is an abstract artifact.  If we want to use it 
for real, we must implement it on a real platform. Building such a VM implementation consists of 
two conceptual tasks.  First, we have to emulate the VM world on the target hardware.  In 
particular, each data structure mentioned in the VM specification, i.e. the stack and the virtual 
memory segments, must be represented in some way by the hardware and low-level software of 
the target platform.  Second, each VM command must be translated into a series of machine 
language instructions that effect the command on the target platform. 
 
This section describes how to implement the VM specified in the previous section on the Hack 
platform specified in Chapter 4.  We start by defining a “standard mapping” from VM elements 
and operations to the Hack hardware and machine language.  Next, we suggest guidelines for 
designing the software that achieves this mapping.  In what follows, we will refer to this software 
using the terms VM implementation or VM translator interchangeably. 
 
4.1 Standard Mapping on the Hack Platform, Part I 
 
If you re-read the virtual machine specification given so far, you will realize that it contains no 
assumption whatsoever about the architecture on which the machine can be implemented.  When 
it comes to virtual machines, platform-independence is the whole point: you don’t want to 
commit to any one hardware platform, since you want your machine to potentially run on all of 
them, including those that were not built yet. 
 
It follows that the VM designer can principally let programmers implement the VM on target 
platforms in any way they see fit.  As it turns out however, it is usually recommended to provide 
some guidelines on how the VM should map on the target platform, rather than leaving these 
decisions completely to the implementer’s discretion.  These guidelines, called standard 
mapping, are provided for two reasons. First, we wish the VM implementation to support inter-
operability with other high-level languages implemented over the target platform.  Second, we 
wish to allow the developers of the VM implementation to run standardized tests, i.e. tests that 
conform to the standard mapping (this way the tests and the software can be written by different 
people, which is always recommended).  With that in mind, the remainder of this section 
specifies the standard mapping of the VM on a familiar hardware platform: the Hack computer. 
 
VM to Hack Translation 

Recall that a VM program is a collection of one or more .vm files, each containing one or more 
VM functions, each being a sequence of VM commands.  The VM translator takes a collection of 
.vm files as input and produces a single Hack assembly language .asm file as output.  Each VM 
command is translated by the VM translator into Hack assembly code. The order of the functions 
within the .vm files does not matter. 
 
RAM Usage 
 
The data memory of the Hack computer consists of 32K 16-bit words.  The first 16K serve as 
general-purpose RAM.  The next 16K contain the memory maps of I/O devices. The VM 
implementation should use this space as follows: 
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RAM addresses Usage 
0–15: 16 virtual registers, whose usage is described below 

16–255: Static variables (of all the VM functions in the VM program)  
256–2047: Stack 

2048–16483: Heap (used to store objects and arrays)  
16384–24575: Memory mapped I/O 

 
TABLE 13: Standard VM implementation on the Hack RAM. 

 
Hack Registers: According to the Hack Machine Language Specification, RAM addresses 0 to 
15 can be referred to by all assembly programs using the symbols R0 to R15, respectively.  In 
addition, the specification states that all assembly programs can refer to RAM addresses 0 to 4 
(i.e. R0 to R4) using the symbols SP, LCL, ARG, THIS, and THAT.  This convention was 
introduced into the assembly language with foresight, in order to promote readable VM 
implementations.  In other words, we anticipated that the main use of the assembly language will 
be to develop VM translators.  With that in mind, the expected use of the Hack registers in the 
VM context is described in Table 14. 
 

Register Name Usage 
RAM[0] SP Stack pointer: points to the next topmost location in the stack   
RAM[1] LCL Points to the base of the current VM function's local segment 
RAM[2] ARG Points to the base of the current VM function 's argument segment 
RAM[3] THIS Points to the base of the current this segment (within the heap) 
RAM[4] THAT Points to the base of the current that segment (within the heap) 
RAM[5-12] TEMP Hold the contents of the temp segment   
RAM[13-15] (-) Can be used by the VM implementation as general-purpose registers. 

 
TABLE 14:  Usage of the Hack registers in the standard mapping 

 
 
Memory Segments Mapping 
 
local, argument, this, that: Each one of these segments is mapped directly on the Hack 
RAM, and its location is maintained by keeping its physical base address in a dedicated register 
(LCL, ARG, THIS, and THAT, respectively).  Thus any access to the i’th location in any one of 
these segments should be translated to assembly code that accesses address (base+i) in the RAM, 
where base is the value stored in the register dedicated to the respective segment. 
pointer, temp: These segments are globally fixed and are each mapped directly onto a fixed 
area in the RAM.  Specifically, the pointer segment is mapped to RAM locations 3-4 (Hack 
registers THIS and THAT) and the temp segment is mapped to RAM locations 5-12 (Hack 
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registers R5, R6, …, R12).  Thus access to pointer i should be translated to assembly code 
that accesses RAM location i+3, and access to temp i should be translated to assembly code that 
accesses RAM location i+5. 
constant: This segment is truly virtual, as it does not occupy any physical space on the target 
architecture.  Instead, the VM implementation handles any VM access to <constant i> by simply 
supplying the constant i.  

static: According to the Hack machine language specification, when a new symbol is 
encountered for the first time in an assembly program, the assembler allocates a new RAM 
address to it, starting at address 16. This convention can be exploited to represent each static 
variable number j in a VM file f as the assembly language symbol f.j. For example, suppose 
that the file Xxx.vm contains the command “push static 3”.  This command can be 
translated to the Hack assembly commands “@Xxx.3” and “D=M”, followed by additional 
assembly code that pushes D’s value to the stack.   This implementation of the static segment 
is somewhat tricky, but it works. 
 
Assembly Language Symbols 
 
To recap, Table 15 summarizes all the assembly language symbols used by VM implementations 
that conform to the standard mapping.  
 

Symbol Usage 

SP, LCL, ARG, 
THIS, THAT 

These pre-defined symbols point to the stack top and to the base 
addresses of the virtual segments local, argument, this, and that. 

R13-R15 Can be used for any purpose. 

“f.j” symbols Each static variable j in file f.vm is translated into the assembly 
symbol f.j.  In the subsequent assembly process, these symbols will 
be automatically allocated RAM locations by the Hack assembler. 

Flow of control  
symbols (labels) 

The VM commands function, call, and label are handled by 
generating symbolic labels, to be described in chapter 8. 

 
TABLE 15: Usage of Assembly symbols in the standard mapping. 

 
 
4.2 Design Suggestion for the VM implementation 

 
The VM translator should accept a single command line parameter, Xxx, where Xxx is either a 
file name containing a VM program (the .vm extension must be specified) or the name of a 
directory containing one or more .vm files (in which case there is no extension): 
 

prompt> translator Xxx 
 
The translator then translates the file Xxx.vm or, in case of a directory, all the.vm files in the Xxx 
directory. The result of the translation is always a single assembly language file named Xxx.asm, 
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created in the same directory as the input Xxx.  The translated code must conform to the standard 
VM-on-Hack mapping.  
 
Program Structure 
 
We propose implementing the VM translator using a main program and two modules: parser and 
code writer.  
 
Parser 
 
This module handles the parsing of a single .vm file.  We propose the following API: 
 
Parser Module 

Encapsulates access to the input code.  Reads a VM command, parses it, and provides convenient access to 
its components.  In addition, Removes all white space and comments. 

Routine Arguments Returns Function 
Constructor 
 

Input file / 
stream -- Opens the input file/stream and gets ready 

to parse it. 

hasMoreCommands -- boolean Are there more commands in the input? 

advance -- -- 

Reads the next command from the input and 
makes it the current command.  Should be 
called only if hasMoreCommands() is 
true.  Initially there is no current command. 

commandType -- 

C_ARITHMETIC, 
C_PUSH, C_POP, 
C_LABEL, C_GOTO, 
C_IF, 
C_FUNCTION, 
C_RETURN, 
C_CALL 

(enumeration) 

Returns the type of the current command. 
C_ARITHMETIC is returned for all the 
arithmetic VM commands. 

arg1 -- string 

Returns the first argument of the current 
command.  In the case of C_ARITHMETIC, 
the command itself (“add”, “sub”, etc.) is 
returned.  Should not be called for 
C_RETURN. 

arg2 -- int 

Returns the second argument of the current 
command.  Should be called only if the 
current command is C_PUSH, C_POP, 
C_FUNCTION, or C_CALL. 
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Code Writer 

This module is responsible for translating each VM command into Hack assembly code.  We 
propose the following API:  

 

CodeWriter Module 

Translates VM commands into Hack assembly code. 

Routine Arguments Returns Function 

Constructor 
 

Output file / stream -- Opens the output file/stream and gets ready 
to write into it. 

setFileName fileName (string) -- Informs the code writer that the translation of 
a new VM file is started. 

writeArithmetic command (string) -- Writes the assembly code that is the 
translation of the given arithmetic command. 

WritePushPop command (enumeration), 

segment (string), 

index (int) 

-- Writes the assembly code that is the 
translation of the given command, where 
command is one of the two enumerated 
values:  C_PUSH or C_POP. 

Close -- -- Closes the output file. 

Comment: More routines will be added to this module in chapter 8. 

 

Main Program 
 
The main program should construct a Parser to parse the VM input file and a CodeWriter to 
generate code into the corresponding output file.  It should then march through the VM 
commands in the input file, and generate assembly code for each one of them. 
 
If the program’s argument is a directory name rather than a file name, the main program should 
process all the .vm files in this directory.   In doing so, it should use a single CodeWriter for 
handling the output, but a separate Parser for handling each input file.   
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5. Perspective 
 
In this chapter we began the process of developing a compiler for a high-level language.  
Following modern software engineering practices, we have chosen to base the compiler on a two-
stage compilation model.  In the frontend stage, covered in chapters 10 and 11, the high-level 
code is translated into an intermediate code, running on a virtual machine.  In the backend stage, 
covered in this and in the next chapter, the intermediate code is translated into the machine 
language of a target hardware platform (see Figures 1 and 9).  
 
The idea of formulating the intermediate code as the explicit language of a virtual machine goes 
back to the late 1970’s, when it was used by several popular Pascal compilers.  These compilers 
generated an intermediate “p-code” which could execute on any computer that implemented it, 
typically using interpreters. This idea came in the right time, since in the early 1980’s the world 
of personal computers began to split into different processor and operating system camps. On the 
backdrop of this division, compilers that generated p-code provided a reasonable solution for 
running the same high-level program on multiple platforms, without having to re-compile it. This 
was the beginning of the cross-platform compatibility challenge, as well as the first attempt to 
address it using a VM approach. 
 
Following the wide spread adoption of the world-wide-web in the mid 1990s, cross-platform 
compatibility became a universally vexing issue. Viewing this want as a business opportunity, 
Sun Microsystems sought to develop a new language that could potentially run on any  computer 
and digital device hooked to the Internet.  The language that emerged from this effort – Java – 
was based on a virtual machine model.  Specifically, the Java Virtual Machine (JVM) is a 
specification that describes an intermediate language called bytebode.  Files written in the 
bytecode language are used for dynamic distribution of Java programs over the internet, most 
notably as applets embedded in web pages. Of course in order to execute these programs, the 
client computers must be equipped with suitable JVM implementations. These Java run-time 
environments became widely available “plug-ins”, provided freely by Sun for practically any 
processor / OS combination, including game consoles and cell-phones. 
 
Today, the JVM model and the associated bytecode language are widely used for code-mobility 
and interoperability over the Internet. The cornerstone of this architecture is the ubiquitous Java 
virtual machine, allowing Sun to market Java as a “write once, run everywhere” language.  As a 
side benefit, the JVM became a means for empowering the client computer in several different 
ways.  For example, it allows verifying the transmitted bytecodes for safety, reducing the risk of 
downloading malicious code. 
 
In the early 2000’s, Microsoft entered the fray with its “.NET” infrastructure. The centerpiece of 
.NET is a virtual machine model called CLR (Common Language Runtime). According to the 
Microsoft vision, many programming languages (including C++, C#, Visual Basic, and J# -- a 
Java variant) could be compiled into intermediate code running on the CLR. This enables code 
written in different languages to inter-operate and share the software libraries of a common run-
time environment.  Yet unlike the Java VM approach, which seeks to allow Java programs to 
execute on any possible hardware/OS platform, the CLR is designed to run only on top of 
operating systems provided by Microsoft. 
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We note in closing that a crucial ingredient that must be added to the virtual machine model 
before its full potential of inter-operability is unleashed is a common software library.  Indeed the 
Java virtual machine comes with the standard Java libraries, and the Microsoft virtual machine 
comes with the Common Language Runtime.  These software libraries can be viewed as small 
operating systems, providing the languages that run on top of the VM with such services as 
memory management, GUI utilities, string functions, math functions, and so on.  One such library 
will be described and built in chapter 12. 
 
 
 
6. Build it 
 
This section describes how to build the VM translator specified in this chapter.  In the next 
chapter we will extend this basic translator with additional functionality, leading to a full-scale 
VM implementation. 
 
Objective: Develop a VM translator that implements the stack arithmetic and memory access 
commands described in the VM Specification, Part I (section 2).  The VM should be implemented 
on the Hack computer platform, conforming to the standard VM-on-Hack mapping described in 
Section 4.1. 
 
Resources: You will need two tools: the programming language in which you will implement 
your VM Translator, and the CPU Emulator supplied with the book.  This emulator will allow 
you to execute the machine code generated by your VM Translator -- an indirect way to test the 
correctness of the latter.  Another tool that may come handy in this project is the visual VM 
Emulator supplied with the book. This program allows to experiment with a working VM 
environment before you set out to implement it yourself.  For more information about this tool, 
refer to the VM Emulator Tutorial. 
 
Contract: Write a VM-to-Hack translator.  Use it to translate the test .vm programs supplied 
below, yielding corresponding .asm programs written in the Hack assembly language.  When 
executed on the supplied CPU Emulator, the assembly programs generated by your translator 
should deliver the results mandated by the supplied test scripts and compare files. 
 
 
6.1 Proposed Implementation Stages 

 
We recommend implementing the translator in two stages.  This modularity will allow you to test 
your implementation incrementally, using the step-by-step test programs that we provide. 
 
Stage I: Stack arithmetic: The first version of your translator should implement two things: (i) 
the nine stack arithmetic and logical commands, and (ii) the “push constant” command.  
Note that the latter is the push command for the special case where the first argument is 
“constant”. 
 
Stage II: Memory access commands: The next version of your translator should be a full 
implementation of the push and pop commands, handling all eight memory segments.  We 
suggest the following order: 
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0. You have already handled the constant segment; 

1. Next, handle the four segments local, argument, this, and that;  

2. Next, handle the pointer and temp segments, in particular allowing modification of the 
bases of the this and that segments; 

3. Finally, handle the static segment. 
 
 
5.2 Test Programs 
 
The supplied test programs and scripts are designed to support the incremental development plan 
described above.  

Stage I: Stack Arithmetic programs: 

• simpleAdd: Adds two constants; 
• stackTest:  Executes a sequence of arithmetic and logical stack operations. 

Stage II: Memory Access programs: 

• basicTest:  Executes pop and push operations using various memory segments; 

• pointerTest:  Executes pop and push operations using the pointer and temp 
            segments; 

• staticTest:  Executes pop and push operations using the static segment. 
 
We supply two test scripts for each test program. One script allows running the source .vm test 
program on the VM emulator, so that you can gain familiarity with the program’s intended 
operation. The other script allows testing the target assembly code generated by your VM 
translator on the CPU emulator. 
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5.3 The VM Emulator 
 
A virtual machine model can be implemented in several different ways.  Translating VM 
programs into machine language -- as we have done so far -- is one possibility.  Another 
implementation option is simulating the VM model in software, using a high-level language.  One 
such simulation program, shown in Figure 16,  is included in the software suite that accompanies 
the book.   
 

 
 

FIGURE 16: The VM emulator.  This program is supplied with the book.  
 
 
Our VM emulator was built with one purpose in mind: illustrating how the VM works, using 
visual GUI and animation effects. Specifically, it allows executing VM programs directly, 
without having to translate them first into machine language.  This is a recommended exercise, as 
it enables experimentation with the VM environment before you set out to implement it yourself. 
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5.4 Tips 
 
Implementation: In order for any VM program to start running, it should include a preamble 
startup code that forces the VM implementation to start executing it on the host platform.  In 
addition, in order for any VM code to operate properly, the VM implementation must store the 
base addresses of the virtual segments in the correct locations in the host RAM.  Both issues -- 
startup code and segments initializations -- are described and implemented in the next chapter.  
The difficulty of course is that we need these initializations in place in order to run the test 
programs given in this project.  The good news are that you should not worry about these issues, 
since the supplied test scripts take care of them in a manual fashion (for the purpose of this 
project only).   

Testing/debugging:  For each one of the five test programs, follow these steps: 

1. Run the supplied test .vm program on the VM emulator, using the VM-emulator test script, 
until you feel comfortable with the intended behavior of the output of this translation step.  

2. Use your partial translator to translate the .vm program.  The result should be a text file 
containing a translated .asm program, written in the Hack assembly language. 

3. Inspect the translated .asm program.  If there are syntax (or any other) errors, debug and fix 
your translator. 

4. Use the supplied .tst and .cmp files to run your translated .asm program on the CPU 
Emulator. If there are run-time errors, debug and fix your translator. 

The supplied test programs were carefully planned to test the specific features of each stage in 
your implementation.  Therefore, it’s important to implement your translator in the proposed 
order, and to test it using the appropriate test programs at each stage. Implementing a later stage 
before an early one may cause the test programs to fail. 

 
Steps 
 

1. Download project7.zip and extract its contents into a directory called project7 on your 
computer, without changing the directories structure embedded in the zip file. 

 
2. Write and test the basic VM translator in stages, as described above. 
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8. The Virtual Machine II: Flow Control1 
 

It’s like building something where you don’t have to order the cement. 
 You can create a world of your own, your own environment, 

and never leave this room.  
(Ken Thompson, 1983 Turing Award lecture) 

 
Chapter 7 introduced the notion of a virtual machine (VM), and ended with the construction of a 
basic VM implementation over the Hack platform.  In this chapter we continue to develop the 
virtual machine abstraction, language, and implementation.  In particular, we focus on a variety 
of stack-based mechanisms designed to handle nested subroutine calls (procedures, methods, 
functions) of procedural or object-oriented languages.  As the chapter progresses, we extend the 
previously built basic VM implementation, ending with a full-scale VM translator.  This 
translator will serve as the backend of the compiler that we will build in chapters 10 and 11, 
following the introduction of a high-level object-based language in chapter 9.  
 
In any “Great Gems in Computer Science” contest, stack processing will be a strong finalist.  The 
previous chapter showed how any arithmetic and Boolean expression could be calculated by 
elementary stack operations.  This chapter goes on to show how this remarkably simple data 
structure can also support remarkably complex tasks like dynamic memory management, nested 
subroutine calling, parameter passing, and recursion. Most people tend to take these 
programming capabilities for granted, expecting modern programming languages to deliver them, 
one way or another.  We are now in a position to open this black box, and see how these 
fundamental programming mechanisms can be supported and implemented using a relatively 
simple stack-processing model. 
 
1. Background 
 
The previous chapter focused on the arithmetic, logical, and data management operations of a 
typical stack-based, virtual machine. This, of course, was just the beginning.  If we want our VM 
to become the backend of present and future compilers, we obviously need to support program 
flow and subroutine handling capabilities as well. We will do this by equipping the basic VM 
with two additional and final sets of commands: program flow commands for handling 
conditional and unconditional branching, and function commands for handling subroutine calls. 
 
The remainder of this section gives an informal introduction to both subjects. This sets the stage 
for section 2, which rounds up the VM specification started in Chapter 7.  Sections 3 and 4 
discuss how to actually complete the VM implementation, leading to a full-scale VM-to-Hack 
translator. 
 
1.1 Program flow 
 
The default execution of computer programs is linear, one command after the other.  This 
sequential flow is occasionally broken, e.g. to embark on another iteration of a loop. In low-level 

                                                 
1 From The Elements of Computing Systems, Nisan & Schocken, MIT Press, forthcoming in 2003, www.idc.ac.il/csd 
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programming, this branching logic is accomplished by instructing to continue execution at some 
specified part of the program other than in the next instruction, using a “goto destination” 
command.  The destination specification can take several forms, the most primitive being the 
physical address of the instruction that should be executed next.  A slightly more abstract 
redirection is established by describing the jump destination using a symbolic label rather than a 
physical address.  This variation requires that the language be equipped with some labeling 
command, designed to assign symbolic labels to selected points in the program.  
 
The basic goto mechanism just described can be easily altered to affect conditional branching as 
well.  Instead of jumping to some destination unconditionally, an “if-goto destination” command 
instructs to take the jump only if a certain Boolean condition is true; if the condition is false, the 
regular program flow should continues, executing the next command in the code. How should we 
introduce the Boolean condition specification into the if-goto mechanism? In stack-based 
machines, the simplest and most natural approach is to condition the jump on the value of the 
stack’s top element: if it’s not zero, jump to the specified destination; otherwise execute the next 
command in the program.  Since the topmost stack value can be computed using any series of 
arithmetic and logical VM operations, one can condition the jump operation on arbitrarily 
complex Boolean expressions. 
 
As is often the case in computer science, humble appearance often belies a great power of 
expression. In this case, the simple goto and if-goto commands can be used to express all the 
conditional and repetition constructs found in any high-level programming language.  Figure 1 
gives two typical examples. 
 

High-level source code   Compiled low-level pseudo code  
if (cond)     code for computing cond 
   s1    if-false-goto L1 
else    code for executing s1 
   s2    goto L2 
…  label L1 
    code for executing s2 
  label L2 
       … 
  

  
while (cond)  label L1 
   s1    code for computing cond 
…    if-false-goto L2 
    code for executing s1 
    goto L1 
  label L2 
        … 

 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

Figure 1: Implementing flow of control using goto and if-goto commands. 
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1.2 Subroutine Calls 
 
Any programming language is characterized by a fixed repertoire of elementary commands. The 
key abstraction mechanism provided by modern languages is the freedom to extend this 
repertoire with high-level operations, designed to meet various programming needs.  Each high-
level operation has an interface specifying how it can be used, and an implementation consisting 
of elementary commands and previously defined high-level operations.  In procedural languages, 
the high-level operations are called subroutines, procedures, or functions. In object-oriented 
languages they are usually called methods, and are typically grouped into classes.  In this chapter 
we will use the term subroutine to refer to all these high-level programming constructs.   
 
The use of a subroutine is typically referred to as a call operation.  Ideally, the part of the 
program that calls the subroutine -- the caller -- should treat the subroutine like any other basic 
operation in the language.  To illustrate, the caller typically contains a sequence of commands 
like <c1, c2, call s1, c3, call s2, c4, …>, where the c’s are elementary commands and the s’s 
are subroutine names. In other words, the caller assumes that the code of the called subroutine 
will get executed -- somehow -- and that following the subroutine’s termination the flow of 
control will return -- somehow -- to the next instruction in the caller’s code.  The freedom to 
ignore these implementation details enables us to write programs in abstract terms, using high-
level operations that are closer to the world of algorithmic thought than to the world of machine 
execution. 
 
Of course the more abstract is the high level, the more work the low level must do.  In particular, 
in order to support subroutine calls, VM implementations must handle several issues: 

• Passing parameters to the called subroutine, and optionally returning a value from the 
called subroutine back to the caller; 

• Allocating memory space for the local variables of the called subroutine, and freeing the 
memory when it is no longer needed; 

• Jumping to execute the called subroutine’s code; 

• When the called subroutine terminates, returning (jumping back) to the command 
following the call operation in the caller’s code. 

 
These issues must be handled in a way that takes into account that subroutine calls can be 
arbitrarily nested, i.e. one subroutine may call another subroutine, which may then call another 
subroutine, and so on and so forth, to any desired depth.  To add to the complexity, we also need 
to support recursion.  This means that subroutines should be allowed to call themselves, and each 
recursion level must be executed independently of the other calls. 
 
1.3 Stack-Based Implementation  
 
We see that the low-level handling of subroutine calls is rather delicate.  The property that makes 
this task tractable is the hierarchical structure of the call-and-return logic: the called subroutine 
must complete its execution before the caller can resume its own execution.  This protocol 
implies a Last-In-First-Out (LIFO) structure, resembling (conceptually) a stack of active 
subroutines.  All the layers in the stack are waiting for the top layer to complete its execution, at 
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which point the stack become shorter and execution resumes at the level just below the previous 
top layer. 
 
Indeed, users of high-level programming languages often encounter terms like “call-stack,” 
“stack overflow,” and so on.  To illustrate, figure 2 shows a method calling pattern in a high-level 
program, along with some run-time checkpoints and the states of the abstract call-stack associated 
with them. 
 
 

 
method a: 
    call b 
    call c 
 
method b: 
    call c 
    call d 
 
method c: 
    call d 
 
method d: 
       … 

start a 
      start b 
          start c 
               start d 
                             stack state  
               end d 
          end c 
          start d 
                             stack state  
          end d 
      end b 
      start c 
           start d 
           end d 
      end c 
end a 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

a 

b 

c 

d 

a 

b 

d 

 

 
Figure 2: Subroutine calls and the abstract call-stack states generated by their execution. 

 
It is perhaps useful to note that from this point onward, the term stack will be used rather freely, 
and the reader should be able to tell from the sentence context the which stack we are taking 
about.  For example, the call stack in Figure 2 is merely a conceptual notion, listing the names of 
all the active subroutine that are presently running.  The global stack, on the other hand, is a real 
object.  In particular, note that each subroutine that has not yet returned must maintain somehow 
its private set of local variables, argument values, pointers, and so on. Taken together, these data 
items are called the method’s frame.  Where should we keep all these frames? As Figure 2 shows, 
we can put them on the global stack.  The reader may wander where the working stack from the 
previous chapter fits in -- the stack that supports the VM’s push, pop, and arithmetic operations.  
Well, this stack can be maintained at the very top of the global stack, as we will see later. 
 
The agent responsible for maintaining the global stack and implementing the call-and-return 
mechanism is the VM implementation.  In order to carry out this stack, the VM implementation 
must handle such issues as return addresses, local variables allocation and de-allocation, and 
parameter passing.  
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Return address: The VM implementation of the “call subName” command is straightforward.  
Since the name of the target subroutine is specified in the command, the VM implementation has 
to resolve the name to a memory address -- a rather simple task -- and then jump to execute the 
code starting in that address. 
 
Returning from the called subroutine via a “return” command is trickier, as the command 
specifies no return address.  Indeed, the caller’s anonymity is inherent in the very notion of a 
subroutine call.  For example, subroutines like sqrt(x) or modulu(x,y) are designed to serve 
many unknown callers, implying that the return address cannot be part of their code. Instead, a 
“return” command should be interpreted as follows: re-direct the program’s execution to the 
command following the command that called the current subroutine, wherever this command 
may be in the program’s code.  The memory location to which we have to return is called return 
address. 
 
One way to implement the return logic is to have the VM implementation save the return address 
just before the subroutine is called, and have it retrieved just after the subroutine exits.  
Conveniently, this store-and-recall setting lends itself perfectly to stack storage: the VM 
implementation can push the return address onto the stack when a subroutine is called, and pop it 
from the stack when the subroutine returns.  In terms of Figure 2, the return address can be kept 
in the method’s frame. 
 
Parameter passing: An important characteristic of well-designed languages is that high-level 
operations defined by the programmer will have the same “look and feel” as that of elementary 
commands. Consider for example the operations add and raise to a power.  VM implementations 
will typically feature the former as an elementary operation, while the latter may be written as a 
subroutine.  In spite of their different implementations, we would like to use both operations in 
the same way.  Thus, assuming that we have already written a Power(x,y) subroutine that 
computes x to the y-th power, we would like to be able to write VM code segments like those 
depicted in Program 3. 
 
 // x+3  // x^3  // (x^3+2)^y 

push x  push x  push x 
push 2  push 3  push 3 
add  call power  call power 
    push 2 
    add 
    push y 
    call power 

 
 
 
 
 
 
 
 

PROGRAM 3: VM elementary commands and high-level operations have 
the same look-and-feel in terms of arguments usage and return values.  Thus 
they can be easily mixed together, yielding well-designed and readable code.  

 
Note that from the caller’s perspective, any subroutine -- no matter how complex -- is viewed and 
treated as a black box operation. In particular, just like with elementary VM  commands, the 
caller expects the subroutine to remove its arguments from the stack and replace them with a 
return value  (which may be ignored by the caller).  Thus, the contract is as follows: the caller 
passes the arguments to the subroutine by pushing them onto the stack; the called subroutine pops 
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the arguments from the stack, as needed, carries out its computation, and then pushes a return 
value onto the stack.  The result is a simple and natural parameter passing protocol requiring no 
memory beyond the already available stack structure. 
 
Local variables: Subroutines rely on local variables for temporary storage.  And when a 
subroutine is used recursively, each recursion level must maintain its own set of local variables.  
Note however that these variables must be stored in memory only during the subroutine call’s 
lifetime, i.e. from the point the subroutine starts executing until it returns.  At this point, the 
memory space allocated to the local variables can be freed.  How can the VM implementation 
effect this dynamic memory allocation? 
 
Once again, the hard-working stack comes to the rescue.  Although the subroutine calling chain 
may be arbitrarily deep as well as recursive, only one subroutine executes at the end of the chain, 
while all the other subroutines up the calling chain are waiting.  The VM implementation can 
exploit this Last-In-First-Out (LIFO) processing model by storing the local variables of all the 
waiting subroutines on the stack, and reinstate them when control returns to the subroutine to 
which they belong.  Revisiting Figure 2, we see that local variables can be saved in, and indeed 
they are part of, the method’s frame. 
.   
 
2. VM Specification, Part II 
 
This section extends the basic VM Specification from Chapter 7 with program flow and function 
commands.  This completes the overall VM speciation. 
 
2.1 Program Flow Commands 
 
The VM language features three program flow commands: 
 

label c This command labels the current location in the function’s code.  Only labeled 
locations can be jumped to from other parts of the program.  The label c is an 
arbitrary string composed of letters, numbers, and the special characters “_”, 
“:”, and “.”.  The scope of the label is the current function. 

goto c This command effects a "goto" operation, causing execution to continue from 
the location marked by the c label.  The jump destination must be located in the 
same function. 

if-goto c This command effects a "conditional goto" operation.  The stack’s topmost 
value is popped; if the value is not zero, execution continues from the location 
marked by the c label; otherwise, execution continues from the next command 
in the program. The jump destination must be located in the same function. 

 
TABLE 4: Program flow commands. 
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2.2 Function Commands 
 
Each function has a symbolic name that is used globally to call it.  The function name is an 
arbitrary string composed of letters, numbers, and the special characters “_” and “.”.   (We 
expect that a method bar in class Foo in some high-level language will be translated by the 
language compiler to a VM function named Foo.bar).  
 
The VM language features three function-related commands: 
 

function f n Here starts the code of a function named f, 
which has n local variables; 

call f m Call function f, stating that m arguments 
have already been pushed onto the stack; 

return Return to the calling function. 

 
TABLE 5: Function calling commands. 

 
 
The Calling Protocol 
 
The events of calling a function and returning from a function can be viewed from three different 
perspectives: that of the calling function, the called function, and the VM implementation. 
 
The calling function view:  

1. Before calling the function, I (the caller) must push all the arguments unto the stack;   

2. Next, I invoke the called function  f  using the command “call  f “; 

3. After the called function returns, the arguments that I pushed before have disappeared from 
the stack and the function’s return value (that always exists) appears at the top of the stack;   

4. After the called function returns, all my memory segments (e.g. arguments and locals) 
are the same as before the call, except for the Temp segment that is now undefined.   

 
The called function view: 

1. Upon getting called, my argument segment has been initialized with values passed by the 
caller, my local variables segment has been allocated and initialized to zero, the working 
stack that I see is empty, and the static segment that I see has been set to the static 
segment of the file to which I belong.  All the other memory segments are undefined and 
can be used as needed.  

2. Just before returning, I must push a value onto the stack. 
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The VM implementation view:  

When a function calls another function, I (the VM implementation) must: 
• Save the return address and the segment pointers of the calling function (except for temp 

which is not saved); 
• Allocate, and initialize to zero, as many local variables as needed by the called function; 
• Set the local and argument segments of the called function;  
• Transfer control to the called function. 

When a function returns, I (the VM implementation) must: 
• Clear the arguments and other junk from the stack; 
• Restore the local, argument, this and that segments of the calling function; 
• Transfer control back to the calling function, by jumping to the saved return address. 

 
2.3 Initialization 
 
When the VM starts running (or is reset), the VM function named “Sys.init” gets executed.   
 
 
3. Implementation 
 
We are now ready to complete the VM implementation whose first part was specified in Chapter 
7. We begin by laying out the full stack structure that must be maintained by the implementation, 
and how it can be mapped over the Hack platform. Next, we give design suggestions and a 
proposed API, leading to a full-scale virtual machine implementation, based on a VM-to-Hack 
translator. This program can be viewed as a stand-alone language translator, as well as the 
backend module of our future compiler. 
 
3.1 The Global Stack 
 
The “system memory” of the VM is implemented by maintaining a global stack.  Each time a 
function is called, a new block is added to the global stack.  The block consists of the arguments 
that were set for the called function, a set of pointers used to save the state of the calling function, 
the local variables of the called function (initialized to 0), and an empty working stack for the 
called function.  Importantly, the called function sees only the tip of this iceberg, i.e. the working 
stack.  The rest of the global stack is used only by the VM implementation and is not visible to 
VM functions. 
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argument n-1

ARG

Saved frame of the
calling function.
Used to return to, and
restore the segments
of, the calling function
upon returning from the
called function.

saved THIS

saved ARG

return address

saved LCL

local 0

local 1

. . .
local k-1

argument 0

argument 1

. . .

states and frames of all the functions
up the calling chain

LCL

SP

saved THAT

working stack of the
current function

local variables of
the current function

arguments of the
current function

 
 

                 FIGURE 6: The global stack  
 
 
 
Example: The factorial (n!) of a given number n can be computed by the bottom-up iterative 
formula .  This algorithm is shown in Figure 7, along with a time-line of a 
typical run-time. 

nnn ⋅−⋅⋅⋅= )1(21! K
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2

call fact(4)

call
mult(1,2)

time

fact

p

mult

waiting

call
mult(2,3)

mult

waiting

call
mult(6,4)

mult

waiting

waiting

6 24

24

return return return

return

function fact(n) {
    vars result,j;
    result=1; j=1;
    while j<=n {
      result=mult(result,j);
      j=j+1;
    }
     return result;
}

function mult(x,y) {
    vars sum,j;
    sum=0; j=y;
    while j>0 {
      sum=sum+x;
      j=j-1;
    }
    return sum;
}

function p(...) {
...
   ... fact(4) ...
}

 
FIGURE 7: Function call-and-return routine: an arbitrary function p calls function fact, which then 
calls mult several times.  Vertical arrows depict transfer of control from one function to another. At any 
given point of time, only one function is running, while all the functions up the calling chain are waiting 
for it to return. When a function returns, the function that called it resumes its execution (which typically 
does something useful with the value returned by the called function).   

 
Of course our concern here is neither the fact nor the mult functions, and that’s why did not 
bother to write them in the VM language.  Rather, we wish to shed light on the hidden 
infrastructure that enables these functions to interact with each other through parameter passing, 
return values, and control re-direction.  The centerpiece of this infrastructure is the global stack, 
as seen in Figure 8. 
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just before  "call mult"

ARG argument 0    (fact)

return addr        (p)

LCL                   (p)

ARG                  (p)

THIS                  (p)

working
stack              (fact)

argument 0    (mult)

argument 1    (mult)

local 0            (fact)

local 1            (fact)

LCL

SP

just after mult is entered just after mult returns

THAT                 (p)

ARG

argument 0   (fact)

return addr       (p)

LCL                  (p)

ARG                 (p)

THIS                  (p)

working
stack            (fact)

argument 0  (mult)

argument 1  (mult)

local 0          (fact)

local 1          (fact)

LCL

SP

THAT                 (p)

return addr   (fact)

LCL              (fact)

ARG            (fact)

THIS            (fact)

local 0          (mult)

local 1          (mult)

THAT        (of fact)

ARG argument 0    (fact)

return addr       (p)

LCL                   (p)

ARG                  (p)

THIS                   (p)

working
stack             (fact)

ret. value      (mult)

local 0           (fact)

local 1           (fact)

LCL

SP

THAT                  (p)

 
 
FIGURE 8: Global stack dynamics. We assume that function p (not seen in this figure) called fact, 
then fact called mult. If we ignore the middle stack instance, we observe that fact has set up some 
arguments and called mult to operate on them (left instance).  When  mult returns (right instance), 
the arguments of the called function have been replaced with the function's return value. In other 
words, when the dust clears from the function call, the calling function has received the service that it 
has requested, and processing resumes as if nothing happened: the drama of mult's processing 
(middle) has left no trace whatsoever on the stack, except for the return value. 
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3.2 Standard Mapping on the Hack Platform, Part II 
 
By standard mapping we refer to a set of guidelines on how to map VM implementations on a 
specific target architecture.  This section completes the standard VM-on-Hack mapping whose 
first part was given in Chapter 7. 
 
Function Calling Protocol 
 
The subroutine calling mechanisms of modern programming languages (e.g. Figures 6-7) can be 
implemented using stack operations.  Table 9 gives the details.  
 

VM command VM-on-Hack Implementation action (pseudo code) 

 

 

Calling a function: 

 
call f n 

push return-address // (using label below) 

push LCL            // save LCL of calling function 

push ARG            // save ARG of calling function 

push THIS           // save THIS of calling function 

push THAT           // save THAT of calling function 

ARG = SP-n-5        // reposition ARG (n=number of args) 

LCL = SP            // reposition LCL 

goto f              // transfer control 

(return-address)       // label for the return address 

 
Function declaration: 
 
function f k 

(f)                    // declare label for function entry   

repeat k times:     // k=number of local variables 

PUSH 0              // initialize all of them to 0 

 

Returning from 
a function: 
 

return 
 

FRAME=LCL           // FRAME is a temporary variable 

RET=*(FRAME-5)      // save return address in a temp. var 

*ARG=pop()          // reposition return value for caller 

SP=ARG+1            // restore SP for caller 

THAT=*(FRAME-1)     // restore THAT of calling function 

THIS=*(FRAME-2)     // restore THIS of calling function  

ARG=*(FRAME-3)      // restore ARG of calling function 

LCL=*(FRAME-4)      // Restore LCL of calling function 

goto RET            // GOTO the return-address 

 
TABLE 9: VM implementation of function commands (pseudo code).  
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Assembly Language Symbols 
 

Symbol Usage 

“functionName:label” 
symbols 

Each “label b” command in a function f should generate a globally 
unique symbol f:b where f is the function name and b is the label 
symbol within the function’s code. When translating “goto b” and 
“if-goto b” commands into the target language, the full label 
specification f:b should be used instead of b. 

“functionName” labels Each function f should generate a symbol f that refers to its entry 
point in the instruction memory of the target architecture. 

return address symbols Each function call should generate a unique symbol that serves as a 
return address, i.e. the location of the command following the call 
command in the instruction memory of the target architecture. 

 
TABLE 10: Special assembly symbols prescribed by the standard mapping.  

 
 
Bootstrap Code 
 
Upon reset, the Hack hardware is wired to fetch and execute the word located in ROM address 
0x0000.  Thus, the code segment that starts at address 0x0000, called bootstrap code, is the first 
thing that gets executed when the computer “boots up”.  As a convention, we want this code to 
effect the following operations (in machine language): 
 

SP=256          // initialize the stack pointer to 0x0100 

call Sys.init   // invoke Sys.init 

 
This code sets the stack pointer to its right value (as per the standard mapping) and then calls the 
Sys.init function.  The contract is that Sys.init should then call the main function of the 
main program, and enter an infinite loop. Taken together, these operations should cause the 
translated VM program to start running. 
 
The “main function” and the “main program” are compilation-specific and vary from one high 
level language to another.  For example, in the Jack language, the default is that the first program 
unit that starts running automatically is the main method of a class named Main.  In a similar 
fashion, when we tell the JVM to execute a given Java class, say Foo, it will look for, and 
execute, the Foo.main method.  Such “automatic” start-up routines can be effected by the 
bootstrap logic described above. 
 
3.3 Design Suggestions for the VM implementation 
 
In chapter 7 we proposed implementing the VM translator as a main program consisting of two 
modules: parser and code writer. The basic translator built in Project 7 was based on basic 
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versions of these modules. In order to turn the basic translator into a full-scale VM 
implementation, we have to extend the basic parser and code writer modules with the 
functionality described below. 
 
Parser 
 
If the basic parser that you built in Project 7 does not already parse the six commands specified in 
this chapter, then add their parsing now.  Specifically, make sure that the commandType method 
developed in Project 7 also returns the constants corresponding to the six VM commands 
described in this chapter: C_LABEL, C_GOTO, C_IF, C_FUNCTION, C_RETURN, C_CALL. 
 
Code Writer 
 
The basic CodeWriter specified in Chapter 7 should be augmented with the following methods. 

 

CodeWriter Module 

Translates VM commands into Hack assembly code. 

The routines listed below should be added to the CodeWriter module API given in Chapter 7. 

Routine Arguments Returns Function 

writeInit 
 

-- -- Writes the assembly code that effects the 
VM initialization (also called bootstrap 
code).  This code should be placed in the 
ROM beginning in address 0x0000. 

writeLabel label (string) -- Writes the assembly code that is the 
translation of the given label command. 

writeGoto label (string) -- Writes the assembly code that is the 
translation of the given goto command. 

WriteIf label (string) -- Writes the assembly code that is the 
translation of the given if-goto command. 

writeCall functionName (string)
numArgs (int) 

-- Writes the assembly code that is the 
translation of the given Call command. 

writeReturn -- -- Writes the assembly code that is the 
translation of the given Return command. 

writeFunction functionName (string)
numLocals (int) 

-- Writes the assembly code that is the trans. of 
the given Function command. 
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4. Perspective 
 
Work in progress. 
 
5. Build it 
 
Objective: Extend the basic VM translator built in project 7 with the ability to handle the 
program flow and function commands specified in this chapter.  The VM should be implemented 
on the Hack computer platform, conforming to the standard mapping described in this chapter. 
 
Resources (same as in Project 7): You will need two tools: the programming language in which 
you will implement your VM Translator, and the CPU Emulator supplied with the book.  This 
emulator allows executing the machine code generated by your VM Translator -- an indirect way 
to test the correctness of the latter.  Another tool that may come handy in this project is the visual 
VM Emulator supplied with the book. This program allows experimenting with a working VM 
environment before you set out to implement it yourself.  For more information about this tool, 
refer to the VM Emulator Tutorial. 
 
Contract: Write a full-scale VM-to-Hack translator, extending the translator developed in Project 
7.  Use it to translate the test .vm programs supplied below, yielding corresponding .asm 
programs written in the Hack assembly language.  When executed on the supplied CPU 
Emulator, the assembly programs generated by your translator should deliver the results 
mandated by the supplied test scripts and compare files. 
 
Proposed Implementation Stages 

 
We recommend implementing the translator in two stages.   

• Stage I: Implementation of program flow commands 
• Stage II: Implementation of function commands 

This modularity will allow you to test your implementation incrementally, using the step-by-step 
test programs that we provide. 

 



Chapter 8:   The Virtual Machine  II                                                                                                          16     
              

 

Test Programs 
The supplied test programs are designed to support the incremental development plan described 
above.  We supply five test programs and test scripts, as follows. 

Program Flow Test Programs 

• basicLoop: Simple test of goto and if-goto commands. Computes the sum 
and pushes the result onto the stack; n+++ L21

• fibonacci: A more challenging test. Computes and stores in memory the first n elements 
of the Fibonacci series. 

Function Calling Test Programs 

• simpleFunction: Simple test of the “function” and “return” commands.  The 
function performs a simple calculation and returns the result. 

• FibonacciElement: A full test of the function call commands, the bootstrap section and 
most of the other VM commands.  The FibonacciElement directory consists of two .vm 
files: 

 Math.vm contains one recursive function called fibonacci.  This function 
returns the n’th element of the Fibonacci series; 

 Sys.vm contains one function called init.  This function calls the 
Math.fibonacci function with n=4, and then loops infinitely. 

Since the overall program consists of two .vm files, the entire directory should be compiled 
in order to create a single FibonacciElement.asm file (compiling each .vm file 
separately will yield two separate .asm files, which is not desired here). 

• StaticTest: A full test of static variables handling.  Consists of two .vm files, each 
representing the compilation of a typical class file, and a sys.vm file, as usual.  Once again, 
the entire directory should be compiled in order to create a single StaticTest.asm file. 

 

As prescribed by the VM Specification (section 2), the bootstrap code must include a call to the 
Sys.init function. 
 
Steps 
 

1. Download project8.zip and extract its contents into a directory called project8 on your 
computer, without changing the directories structure embedded in the zip file. 
 
2. Write and test the full-scale VM translator in stages, as described above. 
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9. The High Level Language1 

 
”High thoughts need a high language.” 

(Aristophanes, 448-380 BC) 
 
This (work-in-progress) chapter presents an overview and specification of the Jack programming 
language.  Jack is a simple object-based language that can be used to write high-level programs.  
It has the basic features and flavor of modern object-oriented languages like Java, with a much 
simpler syntax and no support for inheritance.  The introduction of Jack marks the beginning of 
the end of our journey.  In chapters 10 and 11 we will write a compiler that translates Jack 
programs into VM code, and in Chapter 12 we will develop a simple operating system for the 
Jack/Hack platform, written in Jack.  This will complete the computer’s construction. 
 
The chapter starts with a very brief background.  The bulk of the chapter describes and specifies 
the Jack language and its standard library (operating system).  This is all the information needed 
for writing applications in the Jack language.  Next, we illustrate some computer games written in 
Jack, and give general guidelines on how to write similar interactive applications over the Hack 
platform.  All theses programs can be compiled using a Jack compiler that we provide, and then 
run on the computer hardware that we built in chapters 1-5. Throughout the chapter, our goal is 
not to turn you into a Jack programmer.  Instead, our “hidden agenda” is to prepare you to write 
the compiler and operating system described in the chapters that lie ahead.  
 
1. Background 
 
 

                                                

It’s important to note at the outset that in and by itself, Jack is a rather uninteresting and simple-
minded language.  However, this simplicity has a purpose.  First, you can learn (and unlearn) 
Jack very quickly -- in about an hour.  Second, the Jack language was carefully planned to lend 
itself nicely to simple compilation techniques.  As a result, one can write an elegant Jack 
compiler with relative ease, as we will do in Chapters 10 and 11.  In other words, the deliberately 
simple structure of Jack will help us uncover the software engineering principles underlying 
modern languages like Java and C#.  Rather than taking the compilers and run-time environments 
of these languages for granted, we will build a Jack compiler and a run-time environment 
ourselves, beginning in the next chapter. For now, let’s take Jack out of the box. 
 
2. The Jack Language 
 
We begin with some illustrations of Jack programming, and continue with a formal language 
specification.  The former is all that you need in order to start writing Jack programs, and the 
latter is a complete language reference. 
 
2.1 Examples 

 
1 From The Elements of Computing Systems, Nisan & Schocken, MIT Press, forthcoming in 2003, www.idc.ac.il/csd 

 



Chapter 9: The High Level Language                                                                                                      2     
              
Example 1: Hello World 
 
Our first example is the classic Hello-World program: 
 

 
/** Hello World program */ 
class Main { 
   function void main(){ 
      do Output.printString (“HELLO WORLD”); 
      do Output.println();      // new line 
      return; 
    } 
} 

 

 
PROGRAM 1: Hello World.  

 
This program consists of one class, called Main, which contains one function, called main, that 
contains a sequence of two invocations of functions from the standard library. The Main.main() 
method is where the execution starts in every program.  You can see two comment formats: the 
/** */ documentation comment, and the //… one line comment. 
 
Example 2: Fraction  
 
The task: Every programming language has a fixed set of primitive data types, of which Jack 
supports three: int, char, and boolean.  Suppose we wish to endow Jack with the added ability 
to handle rational numbers, i.e. objects of the form n/m where n and m are integers.  This can be 
done by creating a stand-alone class, designed to provide a fraction abstraction for Jack programs.  
Let us call this class Fraction. 
 
Defining the class interface: A reasonable way to get started is to specify the set of properties 
and services that one would normally expect to see in a fraction abstraction.  One such 
Application Program Interface, or API, is given in Program 2. 
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Fraction (partial API): 

// A “Fraction” is an object representation of n/m where n and m are integers (e.g. 17/253)  

field int numerator, denominator:       Represent n and m 

constructor Fraction new(int a, int b):   Returns a new Fraction object.  

method int getNumerator():                               Returns the numerator of this object. 

method int getDenominator():                           Returns the denominator of this object. 

method Fraction plus(Fraction other):       Returns the fraction sum of this fraction  
                                                                                       and the other one. 

method void print():                                            Prints this object in the format 
                                                                                       “numerator/denominator”. 

 
 

PROGRAM 2: API for the Fraction abstraction.  In Jack, operations on the 
current object (referred to as this object) are represented by methods, and class-
level operations (“static methods” in, e.g., Java) are represented by functions. 

 
Using the class (Example I): APIs mean different things to different people.  If you are the 
programmer who has to implement the fraction abstraction, you can view its API as a contract 
that must be implemented in some way.  Alternatively, if you are a programmer who needs to use 
fractions in your work, you can view the API as a library of fraction objects generators and 
fraction-related operations.  Taking this latter view, consider the Jack code listed in Program 3. 
 

 

/** Compute the sum of 2/3 and 1/5 */ 
class Main { 
   function void main(){ 
       var Fraction a, b, c;         
       let a = Fraction.new(2,3);   
       let b = Fraction.new(1,5);   
       let c = a.plus(b);  // compute c=a+b 
       do c.print();  // should print the text: “13/15” 
              return; 
       } 
} 

 
 

PROGRAM 3: Using the Fraction abstraction in Jack programs  
 

Program 3 illustrates several features of the Jack language: declaration and creation of new 
objects, use of the assignment statement let, and method calling using the do statement.  As the 
code implies, users of the fraction abstraction don’t have to know anything about its underlying 
implementation.  Rather, they should be given access only to the fraction interface, or API, and 
then use it as a black box server of fraction-related operations. 
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Implementing the class: We now turn to the other player in our story -- the programmer who 
has to actually implement the fraction API in Jack.  One possible implementation is given in 
Program 4.  This example illustrates several additional features of object-oriented programming 
in Jack: a typical program structure (classes, methods, constructors, functions), as well as all  
statement types (let, do, return, if, while) available in Jack.  

 
 

/** A Fraction (partial implementation) */ 
  class Fraction { 
 
  field int numerator, denominator; 
  
  /** Construct a new (reduced) fraction given a numerator 
  and denominator */ 
  constructor Fraction new(int a, int b){ 
    let numerator = a; 
    let denominator = b; 
    do reduce();  // if a/b is not reduced, reduce it. 
    return this; 
  } 
   
 /* reduce this fraction – internal method (from the outside,  
    a fraction always seems reduced.) */ 
 method void reduce() { 
     var int g; 
     let g = Fraction.gcd(numerator, denominator); 
     if (g > 1) { 
        let numerator = numerator / g; 
        let denominator = denominator / g; 
     } 
     return; 
  } 
 
  /* compute the gcd of a and b – internal service function */ 
  function int gcd(int a, int b){ 
     var int r; 
     // apply Euclid’s algorithm 
     while (~(b = 0)) { 
        let r = a – (b * (a / b));  // r = remainder of division a/b 
        let a = b; 
        let b = r; 
     } 
     return a; 
  } 
 
// the code continues in PROGRAM 4 (part II)          
 

 
PROGRAM 4 (part I): a Fraction class implementation.   
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// continuation of the PROGRAM 4 (part I) code: 
  
  method int getNumerator(){ 
    return numerator; 
  } 
 
  method int getDenominator(){ 
    return denominator; 
  }   
 
  /** Return the sum of this fraction and the other one */ 
  method Fraction plus(Fraction other){ 
    var int sum; 
    let sum = (numerator * other.getDenominator())  
             +(other.getNumerator() * denominator()); 
    return Fraction.new(sum, denominator * other.getDenominator()); 
  } 
 
  // more methods: minus, times, div, … 
   
  /** print this fraction */ 
  method void print() { 
    do Output.printInt(numerator); 
    do Output.printString(“/“); 
    do Output.printInt(denominator); 
    return; 
  } 
 
} // end Fraction 

 

 
PROGRAM 4 (part II): a Fraction class implementation (continued)  

 
We now turn to a formal description of the Jack language, focusing on its syntactic elements, 
program structure, variables, expressions, and statements. 
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2.2 Syntactic Elements 
 
A Jack program is a sequence of tokens.  Tokens are separated by an arbitrary amount of white 
space (including comments), that is ignored.  Tokens can be symbols, reserved words, constants, 
and identifiers, as listed in Table 5.   
 

White 
space and 
comments 

Space characters, newline characters, and comments are ignored. 
The following comment formats are supported:  
//  comment to end of line 
/*  comment until closing */ 

/** API documentation comment */ 

Symbols 

( ) :  arithmetic grouping, and parameter/argument-lists grouping 
[ ] :  array indexing; 
{ } :  program structure and statement grouping; 
,   :  variable list separator; 
;   :  statement terminator; 
=   :  assignment and comparison operator; 
.   :  class membership; 
+ - * / & | ~ < > :  operators. 

Reserved 
words 

class, constructor, method, function:    Program components 
int, boolean, char, void:                            Primitive types 
var, static, field:                                        Variable declarations 
let, do, if, else, while, return:            Statements 
true, false, null:                                          Constant values 
this:                                                                    Object reference  

Constants 

Positive Integer constants are in standard decimal notation, e.g. “1984”.  
Negative numbers like “–13” are not constants, but rather a unary minus 
operator applied to an integer constant. 

String constants are enclosed within two quote (“) characters and may 
contain any characters except newline or double-quote.  (These characters 
can be obtained using the function calls  String.newLine() and 
String.doubleQuote()). 

Boolean constants can be true or false. 

The constant null signifies a null reference. 

Identifiers Identifiers are composed from arbitrarily long sequences of letters  
(A-Z, a-z), digits (0-9), and “_”.  The first character must be a letter or 
“_”.  The language is case sensitive. 

 
TABLE 5: Syntactic elements of the Jack language. 
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2.3 Program Structure 
 
The basic programming unit in Jack is a class. Each class resides in a separate file and can be 
compiled separately. 
 
Class declarations have the following format: 
 
class name { 
       field and static variable declarations  // must  precede the subroutine declarations 
       subroutine declarations  // a sequence of constructor, method, and function declarations 
} 
 
Each class declaration begins with a name through which the class can be globally accessed.  
Next comes an optional sequence of declarations of class-level fields and static variables, 
described below.  Next comes a sequence of subroutine declarations, defining methods, functions, 
and constructors.  A method “belongs” to an object and provides the objects’ functionality, while 
a function “belongs” to the class in general and is not associated with a particular object (similar 
to Java’s static methods).  A constructor “belongs” to the class and generates object instances of 
this class. 

 
Subroutine declarations have the following formats: 
 

constructor type name (parameter-list) { 
   declarations 
      statements 
} 
method type name (parameter-list)  { 
      declarations 
      statements 
} 
function type name (parameter-list) { 
   declarations 
      statements 
} 
 

Each subroutine has a name through which it can be accessed. The subroutine’s type specifies the 
type of the value returned by the subroutine.  If the subroutine returns no value, the subroutine 
type is declared void; otherwise it can be any of the primitive or object data types supported by 
the language (section 2.4).  Constructors may have arbitrary names but must return the class’s 
own type, i.e. the class name. 
 
Each subroutine contains an arbitrary sequence of local variable declarations and then a sequence 
of statements. 
 
Jack programs: As in Java, a Jack program is a collection of one or more classes.  One class 
must be named Main, and this class must include at least one function named main.  When 
instructed to execute a Jack program that resides in some directory, the host platform will 
automatically start running the Main.main function. 
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2.4 Variables 
 
Variables in Jack must be explicitly declared before they are used.  There are several kinds of 
variables: fields, static variables, local variables, and parameters, each with its associated scope. 
Variables are typed. 
 
Data Types 
 
The type can either be primitive (int, char, boolean) as is pre-defined in the language 
specification, or an Object type (like Employee, Car, etc.) which is defined by the programmer, as 
needed.   
 
Primitive types: Jack features three primitive data types: 

 int:     16-bit 2’s complement; 
 boolean:    false and true; 
 char:     Unicode character. 

 
Variables of primitive types are allocated to memory when they are declared.  For example, the 
declarations “var int age; var boolean gender;” will cause the compiler to create the 
variables age and gender and to allocate memory space to them. 
 
Object types: Every class defines an object type.  Object types are references (as in Java).  The 
declaration of an object variable creates only a reference and only allocated memory to hold the 
reference. Memory for the object itself is only allocated later, if and when the programmer 
actually constructs the variable.  Example:  
 
 

 

// The following assumes the existence of Car and Employee classes. 
// Car objects have model and licensePlate fields. 
// Employee objects have name and car fields. 
var Employee e, f;   // creates variables e, f that contain a null reference 
var Car c;           // creates a variable c that contains a null reference 
... 

let c = Car.new(“Jaguar”,“007”)   // constructs a new Car object  
let e = Employee.new(“Bond”,c)    // constructs a new Employee object  
// At this point c and e hold the references to these two objects. 
let f = e;  // only the reference is copied         
 

 
PROGRAM 6: Object types.   

 
The Jack standard library defines two built-in object types that play a role in the language syntax: 
arrays and strings. 
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Arrays: Arrays are declared using the built-in class Array.  Arrays are single dimensional and 
the first index is always 0 (multi-dimensional arrays may be obtained as arrays of arrays).  Array 
entries do not have a declared type, and different entries in the same array may have different 
types.  The declaration of an array only creates a reference; construction of an array is done using 
the Array.new(length) function; access to array elements is done using the a[j] notation.   The 
following example reads a sequence of integers and then prints their average. 
 
 

 

/** Computes the average of a sequence of integers */ 
class Main { 
   function void main() { 
       var Array a;   
       var int length; 
       var int i, sum; 
 
       let length = Keyboard.readInt(“HOW MANY NUMBERS? ”); 
       let  a = Array.new(length); 
       let i = 0;    
       while (i < length) { 
          let a[i] = Keyboard.readInt(“ENTER THE NEXT NUMBER: ”); 
          let i = i + 1; 
       }  
       let i = 0; 
       let sum = 0; 
       while (i < length) { 
          let sum = sum + a[i]; 
          let i = i + 1; 
       } 
       do Output.printString(“THE AVERAGE IS: ”); 
       do Output.printInt(sum / length); 
       do Output.println(); 
       return; 
       } 
} 
 

 
PROGRAM 7: Arrays.  

 
Strings 
 
Strings are declared using the built-in class String.  The compiler also recognizes the syntax 
“xxx”.  String contents can be accessed and modified using the methods of the String class (see 
below).  Example: 
 
           var String s;   
           var char c; 
           ...         
           let s = “Hello World”;  
           let c = s.charAt(6);     // “W” 
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Automatic conversions: The Jack language is only weakly typed. The language does not define 
the results of attempted assignment or conversion from one type to another, and different 
compilers may allow or forbid different conversions.  (This incompleteness of the definition is in 
order to enable simple compilers to be valid while completely ignoring all typing issues.) All 
compilers allow, and automatically perform, the following assignments: 
 

• Characters and Integers are automatically converted into each other as needed, according to 
the Unicode specification. 

• An integer can be assigned to a reference variable (of any object type), in which case it is 
treated as an address in memory. 

• Any Object type may be converted into an Array, and vice-versa.  The conversion 
“transforms” the fields of the object into consecutive array entries. 
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Variable Scopes 
 
Jack features four kinds of variables. Static variables are defined at the class level, and are shared 
by all the objects derived from the class.  For example, a BankAccount class may have a 
totalBalance static variable that holds the sum of all the balances of all the accounts, where 
each account is represented as an object of the BankAccount class.  Field variables are used to 
define the properties of individual objects of the class, e.g. owner and balance in our banking 
example.  Local variables, used by subroutines, exist only as long as the subroutine is running, 
and parameters are used to pass arguments to subroutines. For example, the function signature 
function void deposit(BankAccount b,int sum) indicates that b and sum are parameters.   
 
Table 8 gives a formal description of all the variable kinds supported by the Jack language. 
 
 

Var. Kind Definition and Description Declared in: Scope 

Static 
variables 

static type name1, name2, … ; 
Only one copy of each static variable exists, 
and this copy is shared by all the  object 
instances of the class. 
(like private static variables in Java) 

Class  
declaration. 

The class in 
which they are 
declared. 

Field 
variables 

field type name1, name2, … ; 
Every object instance of the class has a 
private copy of the field variables.   
(like private object variables in Java)  

Class  
declaration. 

The class in 
which they are 
declared, but 
cannot be used 
in functions.  

Local 
variables 

var type name1, name2, … ; 
Local variables are allocated on the stack 
when the subroutine is called and are freed 
when it returns. 
(like local variables of Java). 

Subroutine  
declaration.   

The subroutine 
in which they 
are declared. 

Parameters 

type name1, type name2, …  
e.g.: 
function void drive (Car c, int miles) 
{ … } 

Used as inputs of subroutines.   

Appear in 
parameter-lists 
as part of 
subroutine 
declarations. 

The subroutine 
in which they 
are defined. 

 
TABLE 8: Variable kinds in the Jack language. 
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2.4 Statements 
 
The Jack language features 5 statements.  They are defined and described in Table 9. 
 
Statement Syntax Description 

let 
let variable=expression; 
or 

let variable [expression]=expression; 

An assignment operation. The variable 
may be static, local, field, or a parameter.  
Alternatively the variable may be an array 
entry. 

if 

if (expression) { 
     statements 
} 
else { 
     statements 
} 

Typical  if statement with an optional else 
clause. 

The brackets are mandatory even if 
statements is a single statement. 

while 
while (expression) { 
     statements 
} 

Typical while statement.  

The brackets are mandatory even if 
statements is a single statement. 

do do function-or-method-call; 

Used to call a function or method for their 
effect, ignoring the value they return, if 
any. 

The function or method call follows the 
syntax described in section 2.6. 

return 
return expression; 
or 

return; 

Used to return values from subroutines.  

The second form must be used by 
functions and methods that return a void 
value. 

Constructors must return the expression 
this. 

 
TABLE 9: Jack statements. 
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2.5 Expressions 
 
Expression Syntax: Jack expressions are defined recursively according to the rules given in 
Table 10. 
 
 

A Jack expression is one of the following: 

 A constant 

 A variable name in scope (the variable may be static, field, local, or a parameter) 

 The this keyword, denoting the current object.  Cannot be used in functions. 

 An array element using the syntax name[expression], where name is a variable name 
of type Array in scope. 

 A subroutine call that returns a non-void type (see Section 2.6). 

 An expression prefixed by one of the unary operators {-,~}: 
           -expression:   arithmetic negation 
           ~expression:  boolean negation (bitwise for integers) 

 An expression of the form expression operator expression where operator is one of 
the binary operators {+,-,*,/,&,|,<,>,=}: 
           +  - *  /   : integer arithmetic operators 
           & |          : boolean And, Or (bitwise for integers) operators 
           <  >  =   :  comparison operators 

 An expression in parenthesis: (expression) 

 
TABLE 10: Jack expressions are either atomic or 
derived recursively from simpler expressions 

 
Order of evaluation and operator priority: Operator priority is not defined by the language, 
except that expressions in parentheses are evaluated first.  Thus an expression like 2+3*4 may 
yield either 20 or 14, whereas 2+(3*4) is guaranteed to yield 14.  The need to use parentheses in 
such expressions makes Jack programming a bit cumbersome.  At the same time, the lack of 
operator priority makes the writing of Jack compilers simpler.   
 
2.6 Subroutine calls 
 
Subroutine calls invoke methods, functions, and constructors for their effect, using the general 
syntax subroutineName(argument-list). The number and type of the arguments must match those 
of the subroutine’s parameters, as defined in its declaration. The parentheses must appear even if 
the argument list is empty.  Each argument may be an expression of unlimited complexity.  For 
example, consider the function declaration “function int sqrt(int n)” in class Math, 
designed to return the integer part of the square root of its single parameter.  Such a function can 
be invoked using calls like Math.sqrt(17), Math.sqrt(a*sqrt(c-17)+3) and so on. 
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Within a class, methods are called using the syntax methodName(argument-list), while functions 
and constructors must be called using their full-names, i.e. 
className.subroutineName(argument-list). Outside a class, the class functions and constructors 
are also called using the full-name syntax, while methods are called using the syntax 
var.methodName(argument-list), where var is a previously defined object variable.  Program 11 
gives some examples. 
 

 
class Bar { 
... 
} 
 
class Foo { 
  ...   
  function void f() { 
    var Bar b; 
    ... 
    ... g(5,7)    // call to method g of class Foo (on this object) 
    ... Foo.p(2)  // call to function or constructor p of class Foo  
    ... Bar.h(3)  // call to function or constructor h of class Bar 
    ... b.q()     // call to method q of class Bar (on object b) 
    ... 
  } 
  ... 
} 

 
 

PROGRAM 11: Subroutine call examples. 
 
Object Construction and Disposal: As mentioned, when a variable of an object type is declared, 
only a reference to an object of this type is allocated.  To actually create the object, a class 
constructor must be called.  There must be at least one constructor for every class that defines a 
type.  Constructors may have arbitrary names, but it is customary to call one of then “new”.   
When constructors are used they are called just like any other class function using the format  
 

let <var> = <class_name>.<constructor_name>(<parameter_list>); 
 
When the constructor is called, the compiler automatically allocates memory space for the new 
object, and assigns the allocated space’s base address to this.  Then the constructor body is 
executed, in order to initialize the object into a valid state.   
 
Objects can be de-allocated and their space reclaimed using the Memory.deAlloc(object) 
function of the standard library.  Convention calls for every class to contain a dispose() method 
that properly encapsulates this de-allocation. 
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Example: Consider a class named List, designed to hold a linked-list.  Each link in the list holds 
an element and a reference to the rest of the list.  Program 12 gives a standard List 
implementation. 
 
 

 
/** A List class (partial implementation) */ 
class List { 
  field int data; 
  field List next; 
 
  constructor List new(int car, List cdr){ 
    let data = car; 
    let next = cdr; 
    return this; 
  } 
... 
 
  method void dispose() { 
     if (~(next = null)) { 
        do next.dispose(); 
     } 
     do Memory.deAlloc(this); 
     return; 
  } 
} 
 

  // create a list holding the numbers (2,3,5): 
function void create235(){ 
  var List v; 
  let v=List.new(5,null); 
  let v=List.new(2,List.new(3,v)); 
  // ... 
  do v.dispose(); 
  return; 
} 

 
 

PROGRAM 12: Examples of object construction and destruction code 
in Jack.  The function constructs the null-terminated linked-list (2,3,5) 
and then disposes it.   
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3. Jack Standard Library / Operating System 
 
The Jack language comes with a standard library that may also be viewed as an interface to an 
underlying operating system.  The library is a collection of Jack classes, and must be provided in 
every implementation of the Jack language.  The standard library includes the following classes: 

 Math:     Provides basic mathematical operations; 

 String:    Implements the String type and basic string-related operations; 

 Array:    Defines the Array type and allows construction and disposal of arrays; 

 Output:    Handles text based output; 

 Screen:    Handles graphic screen output; 

 Keyboard:      Handles user input from the keyboard; 

 Memory:    Handles memory operations; 

 Sys:                Provides some execution-related services. 
 
This section specifies the subroutines that are supposed to be in these classes. 
 
Math 
 
This class enables various mathematical operations. 
 Function int abs(int x): Returns the absolute value of x. 

 Function int multiply(int x, int y): Returns the product of x and y. 

 Function int divide(int x, int y): Returns the integer part of the x/y. 

 Function int min(int x, int y): Returns the minimum of x and y. 

 Function int max(int x, int y): Returns the maximum of x and y. 

 Function int sqrt(int x): Returns the integer part of the square root of x. 
 
String 
 
This class implements the String data type and various string-related operations. 
 Constructor String new(int maxLength): Constructs a new empty string (of length zero) that 

can contain at most maxLength characters. 

 Method void dispose(): Disposes this string. 

 Method int length(): Returns the length of this string. 

 Method char charAt(int j): Returns the character at location j of this string. 

 Method void setCharAt(int j, char c): Sets the j’th element of this string to c. 

 Method String appendChar(char c): Appends c to this string and returns this string. 

 Method void eraseLastChar(): Erases the last character from this string. 
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 Method int intValue(): Returns the integer value of this string (or at least of the prefix until 

a non numeric character is found). 

 Method void setInt(int j): Sets this string to hold a representation of j. 

 Function char backSpace(): Returns the backspace character. 

 Function char doubleQuote(): Returns the double quote (“) character. 

 Function char newLine(): Returns the newline character. 

 
Array 
 
This class enables the construction and disposal of arrays. 
 Function Array new(int size): Constructs a new array of the given size. 

 Method void dispose(): Disposes this array.  
 
Output 
 
This class allows writing text on the screen.   
 Function void moveCursor(int i, int j): Moves the cursor to the j’th column of the i’th row, 

and erases the character located there. 

 Function void printChar(char c): Prints c at the cursor location and advances the cursor one 
column forward. 

 Function void printString(String s): Prints s starting at the cursor location, and advances 
the cursor appropriately. 

 Function void printInt(int i): Prints i starting at the cursor location, and advances the cursor 
appropriately. 

 Function void println(): Advances the cursor to the beginning of the next line. 

 Function void backSpace(): Moves the cursor one column back. 
 
Screen 
 
This class allows drawing graphics on the screen. Column indices start at 0 and are left-to-right.  
Row indices start at 0 and are top-to-bottom.  The screen size is hardware-dependant (over 
HACK: 256 rows * 512 columns). 

 Function void clearScreen(): Erases the entire screen. 

 Function void setColor(boolean b): Sets the screen color (white=false, black=true) to be 
used for all further drawXXX commands. 

 Function void drawPixel(int x, int y): Draws the (x,y) pixel. 

 Function void drawLine(int x1, int y1, int x2, int y2): Draws a line from pixel (x1,y1) to 
pixel (x2,y2). 

 Function void drawRectangle(int x1, int y1, int x2, int y2): Draws a filled rectangle where 
the top left corner is (x1, y1) and the bottom right corner is (x2,y2). 
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 Function void drawCircle(int x, int y, int r): Draws a filled circle of radius r around (x,y) 

 
Keyboard 
 
This class allows reading inputs from the keyboard.   
 Function char keyPressed(): Returns the character of the currently pressed key on the 

keyboard; if no key is currently pressed, returns 0. 

 Function char readChar(): Waits until a key is pressed on the keyboard and released, and 
then echoes the key to the screen and returns the character of the pressed key. 

 Function String readLine(String message): Prints the message on the screen, reads the next 
line (until a newline character) from the keyboard, echoes the line to the screen, and returns 
its value.  This method handles user backspaces. 

 Function int readInt(String message): Prints the message on the screen, reads the next line 
(until a newline character) from the keyboard, echoes the line to the screen, and returns the 
integer until the first non numeric character in the line.  This method handles user 
backspaces. 

 
Memory 
 
This class allows direct access to the main memory.   
 Function int peek(int address): Returns the value of the main memory at this address. 

 Function void poke(int address, int value): Sets the value of the main memory at this address 
to the given value. 

 Function Array alloc(int size): Allocates the specified space on the heap and returns a 
reference to it. 

 Function void deAlloc(Array o): De-allocates the given object and frees its memory space. 
 
Sys 
 
This class supports some execution-related services. 
 Function void halt(): Halts the program execution. 

 Function void error(int errorCode): Prints the error code on the screen and halts. 

 Function void wait(int duration): Waits approximately duration milliseconds and returns.  
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4. Writing Jack Applications  
 
Jack is a general-purpose language that can be implemented over different hardware platforms. In 
the next two chapters we will develop a Jack compiler that ultimately generates Hack code, and 
thus it is natural to discuss Jack applications in the context of the Hack platform. 
 
Recall that the Hack computer is equipped with a 256 rows by 512 columns screen and a standard 
keyboard. These I/O devices, along with the Jack classes that drive them, enable the development 
of interactive programs with a graphical GUI.  Figure 13 gives some examples.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 13: Screen shots of three computer games written in Jack, running on the Hack 
computer.  Left to right: a single player “Pong” game, after scoring three points (the author’s 
record), a “Hangman” game, where the user has to guess the name of the capital city hidden 
behind the squares (the 1-9 number determines the game level), and a maze game, in which the 
user scores points by moving the square over the dots. 

 
The Pong game: A ball is moving on the screen randomly, bouncing off the screen “walls”.  The 
user can move a small bat horizontally by pressing the left and right arrow keys.  Each time the 
bat hits the ball, the user scores a point and the bat shrinks a little, to make the game harder.  If 
the user misses and the ball hits the bottom horizontal line, the game is over. 
 
The Pong game provides a good illustration of Jack programming over the Hack platform. First, 
it is a non-trivial program, requiring several hundreds lines of Jack code organized in several 
classes.  Second, the program has to carry out some non-trivial mathematical calculations, in 
order to compute the direction of the ball’s movements.  Third, the program must animate the 
movement of graphical objects on the screen (the bat and the ball), requiring extensive use of the 
language’s graphics drawing methods.  Finally, in order to do all of the above quickly, the 
program must be efficient, meaning that it has to do as few real-time calculations and screen 
drawing operations as possible. 

 



Chapter 9: The High Level Language                                                                                                      20     
              
Other applications: Of course Pong is just one example of the numerous applications that can be 
written in Jack over the Hack platform.  Since the Jack screen resembles that of a cellular 
telephone, it lends itself nicely to the computer games that one normally finds on cellular 
telephones, e.g. Snake and Tetris.  In general, the more event- and GUI-driven is the application, 
the more “catchy” it will be.  
 
Having said that, recall that the Jack/Hack platform is in fact a general-purpose computer. As 
such, one can use it to develop any application that involves inputs, outputs, and calculations, not 
necessarily in this order.  For example, one can write a program that inputs student names and 
grades, and then prints the average grade and the name of the student who got the maximal grade, 
and so on.  We now turn to describe how such applications can be planned and developed. 
 
The development of Jack applications over a target platform requires careful planning (as 
always).  In the specification stage, the application designer must consider the physical 
limitations of the target hardware, and plan accordingly. For example, the physical dimensions of 
the computer’s screen limits the size of the graphical images that the program can handle. 
Likewise, one must consider the language’s range of input/output commands, in order to have a 
realistic appreciation of what can and cannot be done. 
 
Although the language’s capabilities can be extended at will (by modifying its supporting 
libraries, also written in Jack), readers will perhaps want to hone their programming skills 
elsewhere.  After all, we don’t expect Jack to be part of your life beyond this course.  Therefore, 
it is best to view the Jack/Hack platform as a given environment, and make the best out of it.  
That’s precisely what programmers do when they write software for embedded  devices and 
dedicated processors that operate in restricted environments. Instead of viewing the constrains 
imposed by the host platform as a problem, they view it an opportunity to display their 
resourcefulness and ingenuity.   That’s why some of the best programmers in the trade were first 
trained on primitive computers. 
 
Specification:  The specification stage should start with some description of the application’s 
behavior and, in the case of graphical and interactive applications, some hand-written drawings of 
typical screens.  Using object-oriented analysis and design practices, the designer should then 
create an object-based architecture of the application.  This requires the identification of classes, 
fields, and subroutines, resulting with a well-defined API (like Program 1).    
 
Implementation: Next, one implements the API in Jack and tests it on the target platform.  
Following compilation into VM code, the program can be tested in two alternatives ways.  Either 
the VM code can be executed directly on a VM emulator, or it can be translated into Hack code 
and ran on the hardware platform.    
 
5. Perspective 
 
The Jack programming language is certainly more “clunky” that what you would expect from a 
modern programming language.  However, its basic features and semantic level are not so 
different from other modern programming languages.  Jack is an “object-based” language: 
supports objects and classes but not inheritance.  In this respect it is somewhere between 
procedural languages (like Pascal or C) and object-oriented languages (like Java or C++).  
Additionally, Jack’s primitive type system is pretty weak, and moreover, Jack is not “strongly 
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typed” – i.e. type conformity in assignments and operations is not strictly enforced.  All these 
differences from normal programming languages are in order to simplify compiler construction. 
 
The standard library -- operating system – is quite far from any reasonable operating system.  The 
major deficiencies are the total lack of concurrency -- multi-threading or multi-processing, and 
the total lack of any permanent storage – files or even communication.  The operating system 
does provide graphic and textual I/O similar to standard ones, although in very basic forms.  It 
provides a standard implementation of strings, as well as standard memory allocation and de-
allocation.  Additionally, it provides the basic arithmetic operations of multiplication and division 
that are normally implemented in hardware. 
 
6. Build It 
 
Unlike most projects in the book, this project does not involve building part of the computer’s 
hardware or software systems.  Rather, you have to choose an application of your choice, specify 
it, and then implement it in Jack on the Hack platform. 
 
Objective: The major objective of this project is to get acquainted with the Jack language, for 
two purposes.  First, you have to know Jack intimately in order to write the Jack compiler in 
Projects 10 and 11.  Second, you have to be familiar with Jack’s supporting libraries in order to 
write the computer’s operating system in Project 12.  The best way to gain this knowledge is to 
write a Jack application. 
 
Contract: Adopt or invent an application idea, e.g. a simple computer game or some other 
interactive program.  Then specify and build the application. 
 
Steps 

1. Download the supplied os.zip file and extract its contents to a directory named project9 
on your computer (you may want to give this directory a more descriptive name, e.g. the 
name of your program).  The resulting set of .vm files constitutes an implementation of the 
computer’s operating system, including all the supporting Jack libraries. 

2. Write your Jack program (set of one or more Jack classes) using a plain text editor.  Put each 
class in a separate ClassName.jack file.  Put all these .jack files in the same program 
directory described in step 1. 

3. Compile your program using the supplied Jack Compiler. This is best done by applying the 
compiler to the name of the program directory.  This will cause the compiler to translate all 
the .jack classes in that directory to corresponding .vm files. If a compilation error is 
reported, debug the program and re-compile until no error messages are issued. 

4. At this point, the program directory should contain three sets of files: (a) your source .jack 
files, (b) a compiled .vm file for each one of your source .jack files, and (c) the supplied 
operating system .vm files. To test the compiled program, invoke the VM Emulator and direct 
it to load the program by selecting the program directory name. Then run the program. In 
case of run-time errors or undesired program behavior, fix the program and go to stage 3. 

Deliverables: You are expected to deliver a readme.txt text file that tells users everything they 
have to know about using your program, and a zip file containing all your source Jack files.  Do 
not submit any .vm files. 
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10. The Compiler I: Syntax Analysis1 

 
”Neither can embellishments of language be found  
without arrangement and expression of thoughts,  

nor can thoughts be made to shine without the light of language.” 
  

Cicero (106 BC - 43 BC) 
 
 

This chapter is work in progress.  In this chapter we start the process of building a compiler for the 
Jack high-level language.   The process of compilation is usually partitioned into two conceptual 
parts: syntactic understanding of the program structure, and semantic generation the compiled code.  
This chapter deals with the first issue, that of parsing a program written in the Jack language as to 
“understand its structure”.  The second part, code generation, is the subject of chapter 11.   
 
The concept of “understanding the structure” of a program needs some explanation.   When humans 
reads a program, they immediately see the “structure” of the program: where classes and methods 
begin and end, what are declarations, what are statements, what are expressions and how they are 
built, and so on.  Notice that this is a complex nested structure: classes contain methods that contain 
statements that contain expressions, etc.  The allowable structure of programs may be formalized, 
and programming languages today have formal syntax rules, usually given as a “context free 
language”.   
 
Parsing a program that was written according to these rules means determining the exact 
correspondence between the program and the syntax rules.  This correspondence is usually 
hierarchal, and may be specified by a “derivation tree” for the program.  Compilers often keep an 
explicit data structure that corresponds to this tree and use this data structure for code generation. 
Alternatively, they may generate this information implicitly and use it on the fly for code generation.   
Since in this chapter we do not generate any code yet, we have chosen to explicitly output the parsed 
structure in a particular format, specifically in XML.  This will demonstrate the correct parsing of the 
program, in a way that is easily displayed in any web browser.  In the next chapter we will simply 
replace the parts of the current program that output the parsing in XML with parts that do actual code 
generation. 
 
It is worthwhile to note that the same types of syntax rules used for specifying programming 
languages are also used for specifying the syntax of many other types of files.   While most 
programmers will never need to write a real compiler, it is very likely that they will often need to 
parse files of some other type with a complex syntax.  This parsing will be done in the same way that 
the parsing of a programming language is done.   
 

                                                 
1 From The Elements of Computing Systems, Nisan & Schocken, MIT Press, forthcoming in 2003, www.idc.ac.il/csd 
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1. Background 
 
Lexical Analysis 
 
In its plainest syntactic form, a program is simply a sequence of characters, stored in a text file.  The 
first step in the syntax analysis of the program is to group the characters into words, also called 
tokens, while ignoring white space and comments.  This step is usually called “lexical analysis,” 
“scanning,” or “tokenizing”.  Once a program has been tokenized, the tokens (rather than the 
characters) are viewed as its basic atoms.  Thus the tokens stream becomes the main input of the 
compiler.  Program 1 illustrates the tokenizing of a typical code fragment, taken from a Java or C 
program.  
 

Code fragment  Tokens 
while (count<=100) { /** demonstration */  while 

      count++;  ( 

      // body of while continues  count 

      ...  <= 

  100 

  ) 

  { 

  count 

  ++ 

  ; 

  ... 

 
PROGRAM 1: Lexical Analysis, also called tokenizing, converts the input 
text into a list of tokens.  These tokens are then taken to be the elementary 
atoms from which the program is made. 

 
As Program 1 illustrates, there are several distinct types of tokens: while is a keyword; count is an 
identifier; <= is an operator, 100 is a constant, and so on.  Also notice that white space (blanks and 
newline characters) is eliminated in the tokenizing process, and so are comments. 
 
In general, each programming language specifies the types of tokens it allows, as well as the exact 
syntax rules for combining them into programmatic structures.  For example, some languages may 
specify that “++” is an operator, while other languages may not.  In the latter case, an expression 
containing two consecutive + operators will be considered invalid. 
 
Context Free Languages 
 
Once we have lexically analyzed a program into a stream of tokens, we are now faced with the main 
challenge of parsing it into its formal structure.  We first need to consider how the formal syntax of 
languages is specified.  There is a rich theory called “formal languages” that discusses many types of 
languages, including the formalisms used to specify them.  Almost all programming languages, as 
well as most other formal languages used for describing the syntax of complex files types, use a 
formalism known as “context free grammars”.   

tokenizer 
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A context free grammar is a specification of allowable syntactic elements, and rules for composing 
them from other syntactic elements.  For example, the grammar of the Java language allow us to 
combine the atoms 100,count, and <= into the pattern count<=100.  In a similar fashion, we can 
observe that according to the Java grammar, the input pattern  count<=100 is valid, i.e. it is 
consistent with the language’s rules.   Indeed, every language has a dual perspective. From a 
constructive standpoint, the grammar specifies allowable ways to combine words, also called 
terminals, into higher-level syntactic elements, called non-terminals.  From an analytic standpoint, 
the grammar is also a prescription for doing the reverse: decomposing a given input pattern into non-
terminals, lower-level non-terminals, and eventually into terminals that cannot be decomposed 
further. These terminals correspond to the tokens of the lexical analysis phase.   
 
The syntactic structure of the language -- the context free grammar -- is a set of rules that specify 
how non-terminals can be derived from other non-terminals and terminals.  The grammar may be 
recursive.  There may be more than one possible rule for deriving any particular non-terminal, and 
the different alternatives are usually indicated using the “|” notation.  Grammar 2 gives an example 
of a small part of the context-free grammar of the C-language. 
 

... 

statement:      whileStatement 
           | ifStatement 
           |   ...                 // other statement possibilities follow 
           |   ‘{’ statementSequence ‘}’                       
 
whileStatement:  ‘while’ ‘(‘ expression ‘)’ statement  
 
ifStatement: ...        // if definition comes here 
 
statementSequence:  ‘’      // null, i.e. the empty sequence 
                                         | statement ‘;’ statementSequence 

expression: ...    // definition of an expression comes here 

...                              // more definitions follow 

 
GRAMMAR 2: A Context Free Grammar is a set of rules that describes the syntactic 
structure of a language.  Here we see part of the C language grammar. 

 
What does Grammar 2 mean?  First, the grammar implies that statement, whileStatement, 
ifStatement, expression, and statementSequence are non-terminals, whereas “while”, ‘{‘, ‘}’, and 
‘;’ are terminals.  Further, the grammar implies that a statement in the C language may be one of 
several forms, including a while statement, an if statement, other possibilities not shown here for lack 
of space, and any sequence of statements enclosed in curly brackets.  The resulting grammar is 
highly recursive, allowing nested structures like the following example: 
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while (some expression) { 

   some statement; 

   some statement; 

   while (some expression) { 

      while (some expression)  

             some statement; 

      some statement; 

   } 

} 

 
 
Parsing: The act of checking whether a grammar “accepts” an input text as valid (according to the 
grammar rules) is called parsing. As a side effect of the parsing process, the entire syntactic structure 
of the input text is uncovered.  Since the grammar rules are hierarchical, the result is a tree-oriented 
data structure, called parse tree or derivation tree (weather the tree is stored in memory or 
recognized on-line is a different issue that will be addressed later).  For example, if we apply 
Grammar 2 to the tokenized version of Program 1, we will obtain the parse tree depicted in Figure 3. 
 
 

while . . .( )count <= 100 { count ++

statement

whileStatement

expression

statementSequence

statement

;

statement statementSequence

Input Text:

while (count<=100) {
/** demonstration */
      count++;
      // ...

Tokenized:

while
(
count
<=
100
)
{
count
++
;
...

 
 

FIGURE 3: Parse tree of Program 1 according to Grammar 2.  Solid 
triangles represent lower-level parse trees. The input of the parsing process 
is the tokenized version of the program. 
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Recursive Descent Parsing 
 
The last section ended with a description of a parse tree.  We now turn to describe the algorithms 
that can be used to construct such trees from given input programs, according to the syntax rules of a 
given language.  There are general algorithms that can do that for any context free language.  The 
general algorithms are not efficient enough for practical use on very long programs, and there are 
more efficient parsing algorithms that apply to certain restricted classes of context free languages, 
classes that contain the syntax rules of essentially all program languages.  These more efficient 
algorithms usually run “online” – they parse the input as they read it, and do not have to keep the 
entire input program in memory.  There are essentially two types of strategies for this parsing.  The 
simple strategy works top-down, and this is the one we present here.  The more advanced algorithms 
work bottom-up, and are not described here since they require a non-trivial elaboration of theory. 
 
The top-down approach to parsing, also called recursive descent parsing, parses the input stream 
recursively, using the nested structure prescribed by the language grammar.  Let us consider how a 
parser program that implements this strategy can be constructed.  For every non-terminal building 
block of the language, we can equip the parser with a recursive procedure designed to parse that non-
terminal.  If the non-terminal consists of terminal atoms only, the procedure will simply read them.  
Otherwise, for every non-terminal building block, the procedure will recursively call the procedure 
designed to parse the non-terminal.  The process will continue recursively, until all the terminal 
atoms have been reached and read.  
 
For example, suppose we have to write a recursive descent parser that implements Grammar 2. Since 
the grammar has five derivation rules, the parser implementation can consist of five major 
procedures: parseStatement(), parseWhileStatement(), parseIfStatement(), 
parseStatementSequence(),  and parseExpression().  The parsing logic of these 
procedures should follow the syntactic patterns found in the corresponding grammar rules.  Thus 
parseStatement() should probably start its processing by determining what is the first token.  
Having established the token’s identity, the procedure could determine which statement we are in, 
and then call the parsing procedure associated with this statement type. 
 
For example, if the input stream were Program 1, the procedure will establish that the first token is 
while, and then call the procedure parseWhileStatement().  According to the corresponding 
grammar rule, this procedure should next attempt to read the terminals “while” and “(“, and then 
call parseExpression() to parse the non-terminal expression.  After parseExpression() 
would return (having read and parsed the “count<=100” sequence in our example), the grammar 
dictates that parseWhileStatement()should continue parsing the remainder of the while 
statement.  In particular, the grammar states that it should attempt to read the terminal “)” and then 
recursively call parseStatement() to parse the non-terminal statement.  This call would continue 
recursively, until at some point only terminal atoms are read. 
 
LL(0) grammars: Recursive parsing algorithms are simple and elegant.  If you will think about 
them, you will realize that the only thing that complicates matters is the existence of several 
alternatives for parsing non-terminals.  For example, when parseStatement() attempts to parse a 
statement, it does not know in advance whether this statement is a while-statement, an if-statement, a 
curly-bracket enclosed statement list, and so on.  The span of possibilities is determined by the 
underlying grammar, and in some cases it is easy to tell which alternative we are in.  For example, 
consider Grammar 2.  If the first token is “while”, it is clear that we are faced with a while 
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statement, since this is the only alternative that starts with a “while” token.  This observation can be 
generalized as follows: whenever a non-terminal has several alternative derivation rules, the first 
token specifies without ambiguity which rule to use.  Grammars that have this property are called 
LL(0) grammars, and they can be handled simply and neatly by recursive descent algorithms. 
 
When the first token does not suffice to resolve the element’s type, it is possible that a “look ahead” 
to the next token will settle the dilemma.  Such parsing can obviously be done, but as we need to 
look ahead at more and more tokens down the stream, things start getting complicated.  The Jack 
language grammar, which we now turn to present, is “almost” LL(0), and thus it can be handled 
rather simply by a recursive descent algorithm.  The only exception is the parsing of expressions, 
where just a little look ahead is necessary. 
 
2. Specification 
 
In this chapter we will write a syntax analyzer for the Jack programming language.  In the next 
chapter we will add the functionality of code generation to the syntax analyzer, and obtain a full 
compiler.   The main purpose of the syntax analyzer is to read a Jack program and “understand” its 
structure according to the Jack language syntax specification.  The meaning of “understanding” is 
that the program “knows” at each point the meaning of what it is reading: an expression, a statement, 
a variable name, etc.  It has to have this knowledge in a complete recursive sense.  This is what will 
be needed for later enabling the code generation.   
 
One way to demonstrate that the analyzer has “understood” the programmatic structure of the input 
is to have it print the text in a way that provides a visual image of the program structure.  Therefore, 
while syntax analyzers are normally not stand-alone programs, we define our syntax analyzer as 
having a specific output: an XML description of the program.  Thus the syntax analyzer you build 
here will output an XML file whose structure reflects the structure of the underlying program.  In the 
next chapter you will replace the parts of the program that output the XML code with software that 
generates executable VM code instead. 
 
Usage: The Jack syntax analyzer accepts a single command line argument that specifies either a file 
name or a directory name: 
 

prompt> JackCompiler source 

 
If source is a file name of the form Xxx.jack, the analyzer compiles it into a file named Xxx.xml, 
created in the same folder in which the input Xxx.jack is located. If source is a directory name, all 
the .jack files located in this directory are compiled. For each Xxx.jack file in the directory, a 
corresponding Xxx.xml file is created in the same directory. 
 



Chapter 10: The Compiler I: Syntax Analysis                                                                                               7     
              

 

Jack Language Syntax 
 
The functional specification of the Jack language was given in chapter 9.  We now turn to give a 
formal specification of the Jack language syntax, using a context free grammar.  The grammar is 
based on the following conventions: 

! 'xxx'  quoted boldface is used for characters that appear verbatim (“terminals”) 
! xxx  regular typeface is used for names of language constructs (“non-terminals”) 
! ( )  parentheses are used for grouping of language constructs 
! x | y  means that either x or y can appear 
! x?  means that x appears 0 or 1 times   
! x*  means that x appears 0 or more times 

 
Input: The input to the Jack syntax analyzer is simply a stream of characters.  This stream should be 
tokenized into a stream of tokens according to the rules specifying the lexical elements in the table. 
These tokens may be separated by an arbitrary amount of white space (space and newline characters) 
and comments, which are ignored.  Comments are of the standard formats  /* comment until 
closing */ , /** API comment */, and  // comment to end of line. 
 
The complete language grammar is given in Grammar 4. 
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Lexical elements There are five types of lexical elements in the Jack language: 
keyword: 'class' | 'constructor' | 'function' | 'method' | 'field' | 'static' |  

'var' | 'int' | 'char' | 'boolean' | 'void' | 'true' | 'false' | 'null' | 'this' |  
'let' | 'do' | 'if' | 'else' | 'while' | 'return' 

symbol: '{' | '}' | '(' | ')' | '[' | ']' | '. ' | ', ' | '; ' | '+' | '-' | '*' | '/' | '&' | '|' | '<' | '>' | '=' |  '~' 
integerConstant: a decimal number in the range 0 .. 32767 
stringConstant '"' sequence of ASCII characters not including double quote or newline '"' 
identifier: sequence of letters, digits, and underscore ( '_' ) not starting with a digit 

Program structure: A program is a collection of classes, each appearing in a separate file.  The compilation 
unit is a class, and is given by the following context free syntax: 

class: 'class' className '{' classVarDec*  subroutineDec* '}' 
classVarDec: ('static' | 'field' ) type varName (',' varName)*  ';' 
type: 'int' | 'char' | 'boolean' | className 
subroutineDec: ('constructor' | 'function' | 'method')  ('void' | type) subroutineName '(' 

parameterList ')' subroutineBody 
parameterList: ( (type varName)  (',' type varName)*)? 
subroutineBody: '{' varDec* statements '}' 
varDec: 'var' type varName (',' varName)* ';' 
className: Identifier 
subroutineName: Identifier 
varName: Identifier 

Statements  
statements: statement* 
statement: letStatement | ifStatement | whileStatement | doStatement | returnStatement  
letStatement: 'let'  varName ('[' expression ']')? '=' expression ';' 
ifStatement: 'if' '(' expression ')' '{' statements '}'  ( 'else' '{' statements '}' )? 
whileStatement: 'while' '(' expression ')' '{' statements '}' 
doStatement: 'do'  subroutineCall ';' 

returnStatement 'return'  expression? ';' 

Expressions:  
expression: term (op term)* 
term: integerConstant | stringConstant | keywordConstant | varName | varName '[' expression 

']' | subroutineCall  | '(' expression ')' | unaryOp term 
subroutineCall: subroutineName '(' expressionList ')' | ( className | varName) '.' subroutineName  '(' 

expressionList ')' 
expressionList: (expression (',' expression)* )? 
op: '+' | '-' | '*' | '/' | '&' | '|' | '<' | '>' | '=' 
unaryOp: '-' | '~'  
keywordConstant: 'true' | 'false' | 'null' | 'this' 

 
GRAMMAR 4: Complete grammar of the Jack language 



Chapter 10: The Compiler I: Syntax Analysis                                                                                               9     
              

 

XML Output Format 
 
The output of the syntax analyzer should be an XML description of the program.  Figure 5 gives a 
detailed example. Basically, the analyzer has to recognize two major types of language constructs: 
terminal elements, and non-terminal elements.  These constructs are handled as follows. 
  
Non-terminals:  Whenever a non-terminal element of type xxx of the language is encountered, the 
analyzer should generate the output: 
 

<xxx> 
           recursive code for the body of the xxx element 
</xxx> 

 
Where xxx is one of the following (and only the following) non-terminals of the Jack grammar: 
 

• class, classVarDec, subroutineDec, parameterList, subroutineBody, varDec 
• statements, whileSatement, ifStatement, returnStatement, letStatement, doStatement  
• expression, term, expressionList 

 
Terminals: Whenever a terminal element of type xxx of the grammar is encountered, the following 
output should be generated: 
 

 <xxx> terminal </xxx> 
 
Where xxx is one of the five terminals specified in the “lexical elements” part of the Jack grammar: 
keyword, symbol, integerConstant, stringConstant, identifier. 
 
 



Chapter 10: The Compiler I: Syntax Analysis                                                                                               10     
              

 

 
 Class Bar { 
   method Fraction foo(int y) { 
       var int temp; // a variable 
       let temp = (xxx+12)*-6 ; 
       ... 

 
 
<class> 
  <keyword> class </keyword> 
  <identifier> Bar </identifier> 
  <symbol> { </symbol> 
  <subroutineDec> 
    <keyword> method </keyword> 
    <identifier> Fraction </identifier> 
    <identifier> foo </identifier> 
    <symbol> ( </symbol> 
    <parameterList> 
      <keyword> int </keyword> 
      <identifier> y </identifier> 
    </parameterList> 
    <symbol> ) </symbol> 
    <subroutineBody> 
      <symbol> { </symbol> 
      <varDec> 
        <keyword> var </keyword> 
        <keyword> int </keyword> 
        <identifier> temp </identifier> 
        <symbol> ; </symbol> 
      </varDec> 
      <statements> 
        <letStatement> 
          <keyword> let </keyword> 
          <identifier> temp </identifier> 
          <symbol> = </symbol> 
          <expression> 
            <term> 
              <symbol> ( </symbol> 
              <expression> 
                <term> 
                  <identifier> xxx </identifier> 
                </term> 
                <symbol> + </symbol> 
                <term> 
                  <integerConstant> 12 </integerConstant> 
                </term> 
              </expression> 
              <symbol> ) </symbol> 
            </term> 
            <symbol> * </symbol> 
            <term> 
              <symbol> - </symbol> 
              <term> 
                <integerConstant> 6 </integerConstant> 
              </term> 
            </term> 
          </expression> 
         <symbol> ; </symbol> 
       </letStatement> 
         ... 

 
FIGURE 5: Analyzer input (top) and output (bottom) 
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3. Implementation 
 
We suggest to arrange the implementation of the syntax analyzer in three modules: 
 
! JackAnalyzer:    a main driver that organizes and invokes everything; 
! JackTokenizer:    a tokenizer; 
! CompilationEngine:  a recursive top-down syntax analyzer. 
 
These modules handle the syntax of the language. In the next chapter we will extend this 
implementation with two additional modules that handle the language’s semantics: a symbol table 
and a VM-code writer.  This will complete the construction of a full compiler for the Jack language. 
 
JackAnalyzer 
 
The analyzer program operates on a given source.  If source is a file name of the form Xxx.jack, 
the analyzer compiles it into a file named Xxx.xml, created in the same folder in which the input 
Xxx.jack is located. If source is a directory name, all the .jack files located in this directory are 
compiled. For each Xxx.jack file in the source directory, the analyzer creates a corresponding 
Xxx.xml file in the same directory.  The logic is as follows: 
 
For each source Xxx.jack file: 
 

1. Create a tokenizer from the Xxx.jack file 
2. Open an Xxx.xml file and prepare it for writing 
3. Compile(INPUT: tokenizer, OUTPUT: output file) 

 
Where output file refers to the Xxx.xml file. 
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JackTokenizer 
 
 

The tokenizer removes all comments and white space from the input stream and breaks it into Jack-
language tokens, as specified in the Jack grammar. 

Routine Arguments Returns Function 

Constructor 
 

input file / 
stream 

-- Opens the input file/stream and gets ready 
to tokenize it 

hasMoreTokens -- Boolean do we have more tokens in the input? 

advance -- -- gets the next token from the input and 
makes it the current token.  This method 
should only be called if hasMoreTokens() 
is true.  Initially there is no current token.. 

tokenType -- KEYWORD, SYMBOL, 
IDENTIFIER, 
INT_CONST, 
STRING_CONST 

returns the type of the current token 

keyWord -- CLASS, METHOD, 
FUNCTION, 
CONSTRUCTOR, 
INT, BOOLEAN, CHAR, 
VOID, VAR, STATIC, 
FIELD, LET, DO, IF, 
ELSE, WHILE, 
RETURN, TRUE, 
FALSE, NULL, THIS 

returns the keyword which is the current 
token.  Should be called only when 
tokenType() is KEYWORD. 

symbol -- char returns the character which is the current 
token.  Should be called only when 
tokenType() is SYMBOL. 

identifier -- string returns the identifier which is the current 
token.   Should be called only when 
tokenType() is IDENTIFIER 

intVal  int returns the integer value of the current 
token.  Should be called only when 
tokenType() is INT_CONST 

stringVal  string returns the string value of the current 
token, without the double quotes.  Should 
be called only when tokenType() is 
STRING_CONST. 
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CompilationEngine 
 

This module effects the actual compilation into XML form.  It gets its input from a JackTokenizer and 
writes its parsed XML structure into an output file/stream.  This is done by a series of compilexxx() 
methods, where xxx is a corresponding syntactic element of the Jack grammar.  The contract between these 
methods is that each compilexxx() method should read the syntactic construct xxx from the input, 
advance() the tokenizer exactly beyond xxx, and output the XML parsing of xxx.  Thus, 
compilexxx()may only be called if indeed xxx is the next syntactic element of the input.  

In the next chapter, this module will be modified to output the compiled code rather than XML. 

Routine Arguments Returns Function 

Constructor 
 

Input 
stream/file 

Output 
stream/file 

-- creates a new compilation engine with 
the given input and output.  The next 
method called must be 
compileClass(). 

 

CompileClass 

 

-- -- compiles a complete class. 
 

CompileClassVarDec 

 

-- -- compiles a static declaration or a field  
declaration. 
 

CompileSubroutine 

 

-- -- compiles a complete method, function, 
or constructor. 
 

compileParameterList -- -- compiles a (possibly empty) parameter 
list, not including the enclosing “()”. 
 

compileVarDec -- -- compiles a var declaration. 
 

compileStatements -- -- compiles a sequence of statements, not 
including the enclosing “{}”. 

compileDo -- -- Compiles a do statement 

compileLet -- -- Compiles a let statement 

compileWhile -- -- Compiles a while statement 

compileReturn -- -- compiles a return statement. 
 

compileIf -- -- compiles an if statement, possibly 
with a trailing else clause. 
 

CompileExpression -- -- compiles an expression. 
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CompileTerm -- -- compiles a term.  This method is faced 
with a slight difficulty when trying to 
decide between some of the alternative 
rules.  Specifically, if the current token 
is an identifier, it must still distinguish 
between a variable, an array entry, and 
a subroutine call. The distinction can be 
made by looking ahead one extra token.  
A single look-ahead token, which may 
be one of “[“, “(“, “.”,  suffices to 
distinguish between the three 
possibilities.  Any other token is not 
part of this term and should not be 
advanced over. 
 

CompileExpressionList -- -- compiles a (possibly empty) comma-
separated list of expressions. 

 
 
4. Perspective 
 
In this chapter we have side-stepped almost all of the formal language theory studied in a typical 
compilation course.  We were able to do this by choosing a very simple syntax for Jack that could be 
easily compiled using recursive descent techniques.  In particular, our grammar for expressions did 
not mandate the usual operator precedence (e.g. of multiplication over addition). This avoided the 
need for bottom-up parsing of “LR” languages, usually used in other programming languages.   
 
In reality, programmers rarely write syntax analyzers by hand.  Instead, they use, so called, 
“compiler-compilers” (such as “yacc”) utilities.  These programs receive as input a context free 
grammar, and produce as output a syntax analysis code for this grammar.  Following the “show me” 
spirit of this book, we have chosen not to use such black boxes in the implementation of our 
compiler. 
 
5. Build it 
 
In this project you will build a syntactic analyzer for the Jack language.  In the next chapter, we will 
extend this analyzer into a full-scale Jack compiler. 
 
Objective: Develop a syntactic analyzer that parses Jack programs according to the Jack grammar.  
The output of the analyzer should be written in XML format, following the example given in Figure 
5. 
 
Resources: The main tool that you need is the programming language in which you will implement 
the analyzer.  You will also need the supplied TextComparer utility, which allows comparing the 
output files generated by your analyzer to the compare files supplied by us.  If you want to inspect 
the XML code generated by the analyzer, you will also need an XML viewer (any standard Web 
browser should do the job).  
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Contract: Write the Jack analyzer program in two stages, as described below.  Use it to parse all the 
.jack files mentioned below. For each source .jack file, your analyzer should generate an .xml 
output file.  The generated files should be identical to the supplied .xml  compare-files. 
 
Test Programs 
 
We supply three test programs, as follows. 
 
Square Dance  A simple interactive game that will be used to test your compiler in both projects 10 
and 11.  Although the details of the game are irrelevant to the compilation process, we describe it 
briefly.  Square Dance is a trivial “game” that enables moving a black square around the screen 
using the keyboard’s four arrow keys.  While moving, the size of the square can be increased and 
decreased by pressing the “z” and “x” keys, respectively.   To quit the game, press the “q” key.  The 
game implementation is organized in three classes: 

! Class Main:  Initializes a new game and starts it; 

! Class Square:  Implements an animated square. A square object has a screen 
                                    location and size properties, and methods for drawing, erasing, 
                                    moving, and size changing; 

! Class SquareGame:  Runs the game according to the game rules. 
 
We provide three sets of test files for this program: 

! Input source code:                           Main.jack, Square.jack, SquareGame.jack 
! Tokenizer output (compare files):   MainT.xml, SquareT.xml, SquareGameT.xml 
! Analyzer output (compare files):     Main.xml, Square.xml, SquareGame.xml 

 
Expressionless Square Dance: An identical copy of the Square Dance game, except that each 
expression in the latter is replaced with a single identifier (a variable name in scope). This version of 
the program is especially useful in the project’s second stage, in which it is advised to first 
implement a Parser that handles everything except expressions. The replacement of the expressions 
with variables required the introduction of some illegal variable castings into the source code, and so 
this version of the game cannot be compiled using the Jack Compiler. Still, it follows all the Jack 
grammar rules.  The provided test files have the same names as those of the Square Dance program. 
 
Array test: A single-class Jack program that computes the average of a user-supplied sequence of 
integers. This program uses some array notation not used in the Square Dance program, and 
therefore it is recommended to test it only after successful testing of the latter.  The provided test 
files include the source code (Main.jack), the compare file for the Tokenizer output (MainT.xml) 
and the compare file for the Parser output (Main.xml). 
 
Implementation Tips 
 
! Since the output files that your tokenizer and analyzer will generate will have the same names 

and extensions as those of the supplied compare files, we suggest putting them in separate 
directories. 
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! Since each one of the test programs focuses on different aspects of the Jack language, it is 
recommended to perform the tests in the following order: Expressionless Square Dance, then 
Square Dance, then Array test. 

! All the source test files are written in Jack.  If you want, you can compile the Square and Array 
programs using the supplied Jack compiler, and then run them on the supplied VM emulator.  
These activities are completely irrelevant to the analyzer implementation, but they serve to 
highlight the fact that the test programs are not just plain text (although this is perhaps the best 
way to think about them in the context of this project). 

  
Stage 1: Tokenizer 
 
First, implement a Jack tokenizer.  In order to test this stage, have your tokenizer output an XML file 
describing the list of the parsed tokens. When applied to a text file containing Jack code, the 
tokenizer should produce a list of tokens, each printed in a separate line along with its classification: 
symbol, keyword, identifier, integer constant, or string constant.  The classification should be 
recorded using XML tags.  For example, consider the text:  
 

let x=5+yy; let city=”Paris”;  
 
This input should generate the following output: 
 

<keyword> let </keyword> 
<identifier> x </identifier> 
<symbol> = </symbol> 
<integerConstant> 5 </integerConstant> 
<symbol> + </symbol> 
<identifier> yy </identifier> 
<symbol> ; </symbol> 
<keyword> let </keyword> 
<identifier> city </identifier> 
<symbol> = </symbol> 
<stringConstant> Paris </stringConstant> 
<symbol> ; </symbol> 

 
Note that the tokenizer throws away the double quote characters.  That’s OK. 
 
A slight difficulty, and a solution: Four of the symbols used in the Jack language (<, >, ", &) are 
also used for XML markup, and thus they cannot appear as data in XML files.  To solve the problem, 
have your tokenizer output these tokens as &lt;, &gt;, &quot;, and &amp;, respectively.  For 
example, in order for the text “<symbol> & </symbol>” to be displayed in an XML viewer, the 
source XML should be written as “<symbol> &amp; </symbol>”.  
 
Testing: For each source file Xxx.jack, have your tokenizer give the output file the name 
XxxT.xml.  For each one of the three test programs, apply your tokenizer to every class file in the 
test program. This should generate an .xml output file for each one of the source .jack files. Next, 
use the supplied TextComparer utility to compare the generated output to the supplied .xml 
compare files.  
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Stage 2: Parser 
 
Next, implement the Compilation Engine (also referred to as Parser). Write each method of the 
engine, as specified in the API, and make sure that it emits the correct XML output. 
 
Implementation tips: 
 
! The indentation of XML code is only for readability.  XML viewers and the supplied 

TextComparer utility ignore white space. 

! Note that conceptually speaking, the output of the tokenizer is embedded within the XML output.  
In other words, the parser builds the language “super structure” on top of the terminal tokens. 

! You may want to start by writing a parser that can handle everything except expressions.  For 
example, assume that the only expressions that the input source code can contain may be single 
identifiers, and handle everything else.  Next, extend the parser to handle expressions as well. 

 
Testing: For each source file Xxx.jack, have your parser give the output file the name Xxx.xml.  
For each one of the three test programs, apply your parser to every class file in the test program. This 
should generate an .xml output file for each one of the source .jack files. Next, use the supplied 
TextComparer utility to compare the generated output to the supplied .xml compare files.  
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11. The Compiler II: Code Generation1 

 
“The syntactic component of a grammar must specify, for each sentence, a deep structure that 

determines its semantic interpretation…”  
 

Noam Chomsky (b. 1928), U.S. mathematical linguist 

 
(This chapter is work in progress). In this chapter we complete the development of the Jack 
compiler.  The overall compiler is based on two modules: the VM backend developed in chapters 
7 and 8, and the Syntax Analyzer and Code Generator developed in chapters 10 and 11, 
respectively.  Although the second module seems to consist of two separate sub-modules, they 
are usually combined into one program, as we will do in this chapter.  Specifically, in chapter 10 
we built a Syntax Analyzer that “understands” -- parses -- source Jack programs.  In this chapter 
we extend this program into a full-scale compiler that converts each “understood” Jack operation 
and construct into equivalent series of VM operations on equivalent VM constructs.   
 
1. Background 
 
A program is composed of operations that manipulate data.  When we compile a program into a 
lower level language we must first consider how the data items are mapped into the lower level 
language and then how each possible operation is translated into a sequence of low-level 
operations. 
 
1.1. Mapping of data items 
 
Symbol Table 
 
A typical high-level program contains many identifiers.  Whenever the compiler encounters any 
such identifier, it needs to know what it stands for.  Is it a variable name, a class name, or a 
function name?  If it’s a variable, is it a field of an object, or an argument of a function?  What 
type of variable is it -- an integer, a string, or some other type?  The compiler must resolve these 
questions in order to map the construct that the identifier represents onto a construct in the target 
language. For example, consider a C function that declares a local variable named sum as a 
double type. If we translate this program into the machine language of some 32-bit computer, the 
sum variable will have to be mapped on a pair of two consecutive addresses, say RAM[3012] and 
RAM[3013].  Thus, whenever the compiler will encounter high-level statements involving this 
identifier, e.g. sum+=i or printf(sum), it will have to generate machine language instructions 
that operate on RAM[3012] and RAM[3013] instead.  
 
We see that in order to generate target code correctly, the compiler must keep track of all the 
identifiers introduced by the source code. For each identifier, we must record what the identifier 
stands for in the source language, and on which construct it is mapped in the target language.  
This information is usually recorded in a “housekeeping” data structure called symbol table.  

                                                 
1 From The Elements of Computing Systems, Nisan & Schocken, MIT Press, forthcoming in 2004, www.idc.ac.il/csd 
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Whenever a new identifier is encountered in the source code for the first time (e.g. in variable 
declarations), the compiler adds its description to the table.  Whenever an identifier is 
encountered elsewhere in the program, the compiler consults the symbol table to get all the 
information needed for generating the equivalent code in the target language.  
 
The basic symbol table solution is complicated slightly due to the fact that most languages allow 
different parts of the program to use the same identifiers for different purposes.  For example, two 
C functions may declare a local variable named x for two completely different purposes. The 
programmer is allowed to re-use such symbols freely in different program units, since the 
compiler is clever enough to map them on completely different objects in the target language, as 
implied by the program’s context (and consistent with the programmer’s intention).  Specifically, 
in most languages each identifier has a well defined scope, i.e. the region of the program in which 
the identifier is recognized.   Whenever the compiler encounters an identifier x in a program, it 
treats x as the one currently in scope, and generate the appropriate code accordingly.  The 
complication in handling different scopes comes from the fact that they can usually be nested 
within each other.  The convention in most languages is that inner-scoped definitions always 
hides more outer-scoped ones. 
 
Thus in addition to all the relevant information that must be recorded about each identifier, the 
symbol table must also reflect in some way the identifier’s scope. The classic data structure for 
this purpose is a list of hash tables, each reflecting a single scope nested within the next one in 
the list. When the compiler fails to find the identifier in the table of the current scope, it looks it 
up in the next table, from inner scopes outward.  Thus if x appears undeclared in a certain code 
segment (e.g. a method), it may be that x is declared in the code segment that owns the current 
segment (e.g. a class).   
 
To sum up, depending on the scoping rules of the compiled language, the symbol table can be 
implemented as a list of two or more hash tables.  
 
Allocation of Variables 
 
One of the basic challenges faced by every compiler is how to map the various types of variables 
of the source program onto the memory of the target platform.  This is not a trivial task.  First, 
different variable types require different amounts of memory, so the mapping is not one-to-one.  
Second, different kinds of variables have different life cycles.  For example, a single copy of each 
static variable should be kept “alive” for the complete duration of the program.  In contrast, each 
object instance of the class should have a different copy of all its instance variables (fields).  
Also, each time a function is being called, a new copy of its local variables must be created -- a 
need which is clearly seen in recursion.  In short, memory allocation of variables is an intricate 
task. 
 
That’s the bad news.  The good news is that we have already handled these difficulties.  The VM 
that we created in Chapters 8-9 has built-in mechanisms for representing and handling the 
standard kinds of variables needed by high-level languages: static, local, arguments, and fields of 
objects.  All the allocation and manipulation details were already handled at the VM level.  Recall 
that this functionality was not achieved easily.  In fact, we had to work rather hard to create a VM 
implementation that maps all these constructs and behaviors on a flat RAM structure and a 
primitive instruction set, respectively.   Yet this effort was worth our while: for any given 
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language L, any L-to-VM compiler is now completely relieved from low-level memory 
management; all it has to do is map source constructs on respective VM constructs – at this point 
a rather simple translation task.  Further, any improvement in the way the VM implementation 
manages memory will immediately affect any compiler that depends on it.  That’s why it pays to 
develop efficient VM implementations and continue to improve them down the road. 
 
Arrays  
 
Compilers usually implement arrays as sequences of consecutive memory locations.  The array 
name is usually treated as a pointer to the beginning of the array’s allocated memory block.   In 
some languages (e.g. Pascal), the entire memory space is allocated when the array is declared.  In 
other languages (e.g. Java), the array declaration results in the allocation of a single pointer only.  
The array proper is created in memory later, when the array is explicitly constructed during the 
program’s execution. This type of dynamic memory allocation is done from the heap, using the 
memory management services of the operating system.  Figure 1 offers a snapshot of the memory 
organization of a typical array.  

23

4315
4316
4317

4324

x array

heap 2048

...

...

4318

RAM

...

...

int[] x;       // declare  an  array  of  integers
x=new int[10]; // allocate  a  new  10-location  array
i=2;
x[i]=23;

Java code 4315
2

22
23

...
0

x:
i:

 
FIGURE 1: Array creation and manipulation. All the addresses in the example 
were chosen arbitrarily (except that in the Hack platform, the heap indeed begins at 
address 2048).  Note that the basic operation illustrated is *(x+i)=23. 

 
Thus storing the value 23 in the i’th location of array x can be done by the following pointer 
arithmetic:  

push x 
push i 
+                      
pop addr    // at this point addr points to x[i] 
push 23 
pop *addr   // store the topmost stack element in RAM[addr] 

 
Explanation: The fact that the first four pseudo-commands make variable addr point to the 
desired array location should be evident from Figure 1.  In order to complete the storage 
operation, the target language must be equipped with some sort of an indirect addressing 
mechanism.  Specifically, instead of storing a value in some memory location y, we need to be 
able to store the value in the memory location whose address is the current contents of y. In the 
example above, this operation is carried out by the “pop *addr” pseudo-command.  Different 
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virtual machines feature different ways to accomplish this indirect addressing task.  For example, 
the VM built in chapters 7-8 handles indirect addressing using its pointer and that segments.  
 
Objects 
 
Object-oriented languages allow the programmer to encapsulate data and the code that operates 
on the data within programming units called objects.  This level of abstraction does not exist in 
low-level languages.  Thus, when we translate code that handles objects into a primitive target 
language, we must handle its underlying data and code explicitly.  This will be illustrated in the 
context of Program 2. 
 

 
/** A Bank Account */ 
class BankAccount { 
    
  static int sysID;    
 
  // Fields: 
  int id; 
  String owner; 
  int balance; 
    
  private int nextID() { 
    return ++sysID; 
  } 
 
  /** construct a new bank account with 0 balance */ 
  public BankAccount(String name) { 
    id = nextId();   
    owner = name; 
    balance = 0; 
  } 
 
  /** deposit money in this bank account*/ 
  public void deposit(int amount) { 
     balance = balance + amount; 
  } 
   
  // more methods come here 
 
  public static void main(String args[]) { 
    BankAccount joeAcct; 
    sysID = 0; 
    ...   
    joeAcct = new BankAccount(”joe”); 
    joeAcct.deposit(5000); 
    ...   
  } 
  ... 
} // BankAccount 
 

 
PROGRAM 2 

 
Object data (construction): The data kept by each object instance is essentially a list of fields.  
As with array variables, when an object-type variable is declared, the compiler typically only 
allocates a reference (pointer) variable.  The memory space for the object proper is allocated only 
when the object is created via a call to the class constructor.   The space for the new object must 
ultimately be allocated by the operating system that must provide some service like “alloc(size)” 
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that finds a free memory block of the required size and returns a pointer to its base.  When 
compiling a constructor like BankAccount(String name), the compiler generates code that (i) 
requests the operating system to find a memory block to store the new object, and (ii) sets a 
pointer to the base of the allocated block to be called, within the constructor, “this”.  From this 
point onward, the object’s fields can be accessed linearly, using an index relative to its base.  
Thus statements like let owner=b can be easily compiled, as we now turn to explain. 
 
Object data (usage): The previous paragraph focused on how the compiler generates code that 
creates new objects.  We now describe how the compiler handles commands that manipulate the 
data encapsulated in existing objects. For example, consider the handling of a statement like let 
balance=balance+amount within the method deposit.  First, an inspection of the symbol table 
will tell the compiler that amount is an argument, while balance is the 2nd field of the 
BankAccounts class (starting the field count from 0). Using this information, the compiler can 
generate code effecting the operation *(this+2) = *(this+2) + (argument 1).  Of course the 
generated code will have to accomplish this operation using the target language. 
 
Object code: The encapsulation of methods within object instances is a convenient abstraction 
that is not implemented for real.  Unlike the fields data, of which different copies are indeed kept 
for each object instance, only one copy of each method is actually kept at the target code level.  
Thus the trick that stages the code encapsulation abstraction is to have the compiler force the 
method to always operate on the desired object.  A standard simple way to handle this is by 
passing the object reference as a “hidden” argument.  I.e. a method call like xxx.m(y) is actually 
compiled as if it were written as m(xxx,y): “push xxx, push y, call m”.  A syntactic detail that 
has to be handled is making sure that the called method m is really the one defined for xxx’s class.  
In object-oriented languages this determination must be done in run-time due to the possibility of 
method overriding in a sub-class.  When run-time typing is out of the picture, e.g. in languages 
like Jack, or if m was somehow declared not to be virtual, then all that is needed is to ensure that 
the called method m belongs to the correct class.  E.g. in our example, if xxx was a variable of 
class Xxx, then we may call the method named Xxx.m. 
 
1.2. Command translation 
 
We now turn to describe how commands are translated.  There are two elements to consider: 
expression evaluation and flow control. 
 
Expression Evaluation  
 
How should we generate code for evaluating high level expressions like x+f(2,y,-z)*5?  First, 
we must “understand” the syntactic structure of the expression, e.g. convert it into a parse tree 
like the one depicted in Figure 3.   This was already handled in chapter 10.  Next, we traverse the 
tree and generate the target code.  Clearly, the choice of the code generation algorithm will 
depend on the target language into which we are translating. 
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Source code:

x+f(2,y,-z)*5

Target code:

push x
push 2
push y
push z
-   (unary)
call f
push 5

+

+

x *

f 5

2 -y

z

*

-
code
generation

(syntax
analysis)

(semantic
synthesis)

parsing

 
FIGURE 3: Code generation for expressions is based on a syntactic understanding of 
the expression, and can be easily accomplished by recursive manipulation of the 
expression tree.  Note that the parsing stage was carried out in Chapter 10. 

 
The strategy for translating expressions into a stack-based language is based on a postfix (depth-
first) traversal of the corresponding expression tree.  This simple strategy is described in 
Algorithm 3. 

 

Code(exp): 
     if exp is a number n            then    output  “push n” 
     if exp is a variable v           then    output “push v” 
     if exp = (exp1 op exp2)      then    Code(exp1); Code(exp2) ; output “op” 
     if exp = op(exp1)                then    Code(exp1) ; output “op” 
     if exp = f(exp1 … expN)    then    Code(exp1) … Code(expN); output “call f” 

 
ALGORITHM 4: A recursive postfix traversal algorithm for evaluating 
an expression tree by generating commands in a stack-based language. 

The reader can verify that when applied to the tree in Figure 3, Algorithm 4 yields the desired  
stack-machine code. 
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Flow Control  
 
Structured programming languages are equipped with a variety of high-level control structures 
like if, while, for, switch, and so on.   In contrast, low-level languages typically offer two 
control primitives: conditional and unconditional goto.  Therefore, one of the challenges faced by 
the compiler is to translate structured code segments into target code that includes these 
primitives only. Figure 5 gives two examples. 
 

Source code   Generated code  

if (cond)     code for computing ~cond 
   s1    if-goto L1 

else    code for executing s1 

   s2    goto L2 

…  label L1 

    code for executing s2 

  label L2 

       … 
   

while (cond)  label L1 

   s1    code for computing ~cond 

…    if-goto L2 

    code for executing s1 

    goto L1 

  label L2 
        … 

 
FIGURE 5: Compilation of control structures  

 
Two features of high-level languages make the compilation of control structures slightly more 
challenging.  First, control structures can be nested, e.g. if within while within another while 
and so on.  Second, the nesting can be arbitrarily deep.   The compiler deals with the first 
challenge by generating unique labels, as needed, e.g. by using a running index embedded in the 
label. The second challenge is met by using a recursive compilation strategy.  The best way to 
understand how these tricks work is to discover them yourself, as you will do when you will build 
the compiler implementation described below. 
 
2. Specification 
 
Usage: The Jack compiler accepts a single command line argument that specifies either a file 
name or a directory name: 
 

prompt> JackCompiler source 
 
If source is a file name of the form Xxx.jack, the compiler compiles it into a file named Xxx.vm, 
created in the same folder in which Xxx.jack is located. If source is a directory name, all the 
.jack files located in this directory are compiled. For each Xxx.jack file in the directory, a 
corresponding Xxx.vm file is created in the same directory. 
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Standard mapping over the Virtual Machine 
 
This section lists a set of conventions that must be followed by every Jack-to-VM compiler. 

File and function naming:  Each .jack class file is compiled into a separate .vm file.  The Jack 
subroutines (functions, methods, and constructors) are compiled into VM functions as follows: 

 A Jack subroutine xxx() in a Jack class Yyy is compiled into a VM function called 
Yyy.xxx. 

 A Jack function or constructor with k arguments is compiled into a VM function with k 
arguments. 

 A Jack method with k arguments is compiled into a VM function with k+1 arguments.  
The first argument (argument number 0) always refers to the this object.   

Returning from void methods and functions: 

 VM functions corresponding to void Jack methods and functions must return the constant 
0 as their return value. 

 When translating a “do subName” statement that invokes a void function or method, the 
caller of the corresponding VM function must remember to pop (and ignore) the returned 
value, which is always the constant 0. 

Memory allocation and access: 

 The static variables of a Jack class are allocated to, and accessed via, the VM’s static 
segment of the corresponding .vm file. 

 The local variables of a Jack subroutine are allocated to, and accessed via, the VM’s 
local segment. 

 Before calling a VM function, the caller must push the function’s arguments onto the 
stack.  If the VM function corresponds to a Jack method, the first pushed argument must 
be the object on which the method is supposed to operate. 

 Within a VM function, arguments are accessed via the VM’s argument segment. 

 Within VM functions corresponding to Jack methods or constructors, access to the fields 
of the this object is obtained by first pointing the VM’s this segment to the current 
object (using “pointer 0”) and then accessing individual fields via “this index” 
references.  For VM functions corresponding to Jack methods, the base of the this 
segment is passed as the 0’th argument and code for setting it is automatically inserted by 
the compiler at the beginning of the VM function.  For constructors, the base of the this 
segment is obtained and set when the space for the object is allocated.  The code for this 
allocation is automatically inserted by the compiler at the beginning of the constructor’s 
code. 

 Within a VM function, access to array entries is obtained by pointing the VM’s that 
segment to the address of the desired array location. 

Constants: 
 null and false are mapped to the constant 0.  True is mapped to the VM constant –1 

(that is obtained via “push constant 0” followed by “neg”.) 

Use of Operating system functions: 
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When needed, the compiler should use the following built-in functions, provided by the 
operating system: 

 Multiplication and division is handled using the OS functions Math.multiply() and 
Math.divide(). 

 String constants are handled using the OS constructor String.new(length) and the OS 
method String.appendChar(nextChar).  

 Constructors allocate space for constructed objects using the OS function 
Memory.alloc(size). 

 
3. Implementation 
 
3.1. Compilation Example 
 
We start with a simple example.  This examples shows (parts of) a Jack class, the constructed 
symbol tables, and the generated VM code. 
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// High-level (Jack) code 
// Some common sense was sacrificed in this banking example in order 
// to create non-trivial and easy-to-follow compilation examples. 
class BankAccount { 
   // class variables 
   static int nAccounts; 
   static int bankCommission;  // as a percentage, e.g. 10 for 10 percent 
   // account properties 
   field int id; 
   field String owner; 
   field int balance; 
    
   method int commission(int x) {/* code omitted */ } 
    
   method void transfer(int sum, BankAccount from, Date when) { 
      var int i, j;  // some local variables 
      var Date due;   // some other date variable 
      // … omitted code 
      let balance = (balance + sum) - commission(sum * 5); 
      return; 
   }    
   // ... more methods 
} 
 

 
Class-scope symbol table  Method-scope (transfer) sym. table 
Name type Kind #  name Type kind # 
nAccounts int Static 0  this BankAccount argument 0 
bankCommission int Static 1  sum int argument 1 
id int Field 0  from BankAccount argument 2 
owner String Field 1  when Date argument 3 
balance int Field 2  i int var 0 
     j int var 1 
     due Date var 2 

 

 // VM pseudo code 

function BankAccount.commission 
// … code omitted 
function BankAccount.trasnfer 
push this-that-was-passed-as-argument 
pop this-segment-base 
// .. code omitted 
push balance 
push sum 
add 
push this 
push sum 
push 5 
call multiply 
call commission 
sub 
pop balance 
push 0 
return 
// … code omitted 

// VM code 

function BankAccount.commission 0 
// … code omitted 
function BankAccount.trasnfer 3 
push argument 0 
pop pointer 0 
// … code omitted 
push this 2 
push argument 1 
add 
push argument 0 
push argument 1 
push constant 5 
call Math.multiply 2 
call BankAccount.commission 2 
sub 
pop this 2 
push constant 0 
return 
// … code omitted 

 
PROGRAM 6: Symbol table and code generation example.  

Compilation examples for arrays and objects can be found as examples in chapter 8. 
 
3.2. Suggested Design 
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We now turn to propose a software architecture for the compiler.  This architecture builds upon 
the Syntax Analyzer described in chapter 10.  In fact, the current architecture is based on 
gradually evolving the Syntax Analyzer into a full-scale compiler.  The overall compiler can thus 
be constructed using five modules: 
 

 A main driver that organizes and invokes everything (JackCompiler); 

 A tokenizer  (JackTokenizer); 

 A symbol table (SymbolTable); 

 An output module for generating VM commands (VMWriter); 

 A recursive top-down compilation engine (CompilationEngine). 

 
Class JackCompiler 
 
The program receives a name of a file or a directory, and compiles the file, or all the Jack files in 
this directory.  For each Xxx.jack file, it creates a Xxx.vm file in the same directory.  The logic is 
as follows: 
 

For each Xxx.jack file in the directory: 
 

1. Create a tokenizer from the Xxx.jack file 
2. Create a VM-writer into the Xxx.vm file 
3. Compile(INPUT: tokenizer, OUTPUT: VM-writer) 

 
 
Class JackTokenizer 
 
The API of the tokenizer is given in chapter 10. 
 
Class SymbolTable 
 
This module provides services for creating, populating, and using a symbol table.  Recall that 
each symbol has a scope from which it is visible in the source code. In the symbol table, each 
symbol is given a running number (index) within the scope, where the index starts at 0 and is 
reset when starting a new scope. The following kinds of identifiers may appear in the symbol 
table: 
 

Static:            Scope: class. 
Field:             Scope: class. 
Argument:     Scope: subroutine (method/function/constructor). 
Var:               Scope: subroutine (method/function/constructor). 

When compiling code, any identifier not found in the symbol table may be assumed to be a 
subroutine name or a class name.  Since the Jack language syntax rules suffice for distinguishing 
between these two possibilities, and since no “linking” needs to be done by the compiler, these 
identifiers do not have to be kept in the symbol table.   
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A symbol table that associates names with information needed for Jack compilation: type, kind, and 
running index.  The symbol table has 2 nested scopes (class/subroutine).  

Routine Arguments 
(type) Returns Function 

Constructor 
 

-- -- Creates a new empty symbol table 

startSubroutine -- -- Starts a new subroutine scope (i.e. erases 
all names in the previous subroutine’s 
scope.) 

define name (String) 

type (string) 

kind (STATIC, 
FIELD, ARG, or 
VAR) 

-- Defines a new identifier of a given name, 
type, and kind and assigns it a running 
index.  STATIC and FIELD identifiers 
have a class scope, while ARG and VAR 
identifiers have a subroutine scope.  

varCount kind (STATIC, 
FIELD, ARG, or 
VAR) 

int Returns the number of variables of the 
given kind already defined in the current 
scope. 

kindOf name (String) (STATIC, FIELD, 
ARG, VAR, NONE) 

Returns the kind of the named identifier in 
the current scope. Returns NONE if the 
identifier is unknown in the current scope. 

typeOf name (String) String Returns the type of the named identifier in 
the current scope. 

indexOf name (String) int Returns the index assigned to named 
identifier.  

 
Comment: you will probably need to use two separate hash tables to implement the symbol 
table: one for the class-scope and another one for the subroutine-scope.  When a new subroutine 
is started, the subroutine-scope table should be cleared. 
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VMWriter 
 
This class writes VM commands into a file.   It encapsulates the VM command syntax. 

 
Emits VM commands into a file  

Routine Arguments (type) Returns Function 

Constructor 
 

Output file / stream -- Creates a new file and prepares it for writing 
VM commands 

writePush Segment  (CONST, 
ARG, LOCAL, 
STATIC, THIS, 
THAT, POINTER, 
TEMP) 
Index (int) 

-- Writes a VM push command 

writePop Segment  (CONST, 
ARG, LOCAL, 
STATIC, THIS, 
THAT, POINTER, 
TEMP) 
Index (int) 

-- Writes a VM pop command 

WriteArithmetic  command (ADD, SUB, 
NEG, EQ, GT, LT, 
AND, OR, NOT) 

-- Writes a VM arithmetic command 

WriteLabel label (String) -- Writes a VM label command 

WriteGoto label (String) -- Writes a VM label command 

WriteIf label (String)  Writes a VM If-goto command 

writeCall name (String) 

nArgs (int) 

-- Writes a VM call command 

writeFunction name (String) 

nLocals (int) 

-- Writes a VM function command 

writeReturn -- -- Writes a VM return command  

close -- -- Closes the output file 
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Class CompilationEngine 
 
This class does the compilation itself.  It reads its input from a JackTokenizer and writes its 
output into a VMWriter.  It is organized as a series of compilexxx() methods, where xxx is a 
syntactic element of the Jack language.  The contract between these methods is that each 
compilexxx() method should read the syntactic construct xxx from the input, advance() the 
tokenizer exactly beyond xxx, and emit to the output VM code effecting the semantics of xxx.  
Thus compilexxx() may only be called if indeed xxx is the next syntactic element of the input.  
If xxx is a part of an expression and thus has a value, then the emitted code should compute this 
value and leave it at the top of the VM stack.  
  
The API of this module is identical to the API of the Syntax Analyzer’s compilation engine, 
specified in chapter 10.  We suggest gradually morphing the syntax analyzer into a full compiler. 

 
4. Perspective 
 
The fact that Jack is a relatively simple language permitted us to side-step several compilation 
issues.  Here we mention some of the most significant ones. 
 
While Jack looks like a typed language, this is hardly the case: all data types are 16-bit long, and 
the semantics of the language allow compilers to ignore almost all type information (with the 
single exception that a method call x.m() must know x’s type).  In most other languages the type 
system has significant implications for the compiler: different amounts of memory must be 
allocated for different types; conversion from one type into another requires specific operations; 
the compilation of a simple expression like x+y strongly depends on the types of x and y; and so 
on.  In particular Jack compilers need not determine the types of expressions, e.g. array entries in 
Jack are not typed.  
 
Another significant simplification is that Jack does not support inheritance.  This major 
simplification implies that all method calls can be determined statically at compile-time, rather 
than treating them as virtual methods whose location is only determined at run-time according to 
the run-time type of the object.  
 
The lack of real typing, of inheritance and of public class fields, allows a truly independent 
compilation of classes. A class in Jack can be compiled without any access to the code of any 
other class: the fields of other classes are never accessed and all linking to methods of other 
classes is “late”, done just by name.   
 
Many other simplifications of the Jack language are not very significant and can be relaxed with 
little effort (but also little pedagogic gain).  E.g. one may easily add a “for” statement to Jack, or 
character constants ‘c’.  
 
Finally, as usual, we did not pay any attention to optimization.  Optimization is, of course, a main 
focus of attention in the code generation part of any compilation course. 
 
5. Build it 
Project 10 guidelines will be published in the web site.  
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12. The Operating System1 
 

“Civilization progresses by extending the number of operations  
that we can perform without thinking about them" 

(Alfred North Whitehead, Introduction to Mathematics, 1911) 

(This chapter is work in progress.) In previous chapters of this book we described and built the 
hardware architecture of a computer platform, called Hack, and the software hierarchy that makes 
it usable. In particular, we introduced an object-based language, called Jack, and described how 
to write a compiler for it.  Other high-level programming languages can be specified on top of the 
Hack platform, each requiring its own compiler. 
 
The last major interface which is missing in this puzzle is an operating system.  The OS is 
designed to close gaps between the computer's software and hardware systems, and to make the 
overall computer more accessible to programmers and users.   For example, our computer is 
equipped with a bitmap screen.  In order to output the text “Hello World”, several hundreds 
pixels must be drawn at specific locations on the computer’s screen.  To do so, we can consult the 
hardware specification, and write commands that put the necessary bits in the RAM segment that 
controls the screen's output.  Needless to say, high-level programmers will need a better interface 
with the screen.  They will want to use commands like print(‘Hello World’), and let someone 
else worry about the details.  And that’s where the operating system enters the picture.   
 
Throughout the chapter, the term “operating system” is used rather loosely.  In fact, the OS 
services that we describe comprise an operating system in a very minimal fashion, aiming to 
encapsulate various hardware-provided services in a software-friendly way and extending high-
level languages with some mathematical functions and abstract data types. The dividing line 
between an operating system in this sense and a “standard language library” is not very clear.  
Usually, standard libraries associated with particular programming languages include both 
interfaces to the underlying services of the operating system and other libraries and services 
related to the programming language and its indented uses. 
 
Indeed, the simple operating system we build here may alternatively be viewed as a standard 
library for the Jack language.  It is packaged a collection of Jack classes, each providing a set of 
related services via Jack subroutine calls.  The resulting OS has many features resembling those 
of industrial strength operating systems, but it lacks numerous OS features such as process 
handling or disk management.   
 
Operating systems are usually programmed in a high level language and compiled into binary 
form like any other program.  Indeed the operating system described here is written completely in 
Jack.  Unlike normal programs written in a high-level language, the operating system code must 
be aware of the hardware platform it is running on.  For example, in order to implement the 
various encapsulated  I/O services, it must directly access the I/O devices.  The Jack 
programming language was defined with sufficient “lowness” in it, permitting an intimate 
closeness to the hardware, when needed.  

                                                 
1 From The Elements of Computing Systems, Nisan & Schocken, MIT Press, forthcoming in 2004, www.idc.ac.il/csd 
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The title of this chapter is somewhat misleading, since we discuss only the OS elements needed 
for our computer platform. The chapter starts with a background section that describes the 
underlying algorithms and programming techniques.  Next, we specify the complete Sack OS 
API, and give guidelines on how to implement it in Jack.  Section 4 mentions briefly  some of the 
elements of normal operating systems that were not discussed, and Section 5 walks you through a 
complete implementation of the OS. 
 
The chapter embeds two key lessons, one in software engineering and one in computer science.  
First, we describe and illustrate the important interplay between high-level languages, compilers, 
and operating systems.  Second, we present a series of elegant and efficient algorithms, each 
being a little computer science gem.  
 
 
 
1. Background 
 
1.1 Mathematical Operations 
 
Almost every computer system must support mathematical operations like addition, 
multiplication, and division.  Normally, addition is implemented in hardware, at the ALU level, 
as we have done in Chapter 3.  Other operations like multiplication and division can be 
implemented in either hardware or software, depending on the computer's purpose and 
cost/performance requirements.  This section shows how multiplication, division, and square root 
operations can be implemented efficiently in software, at the operating system level.  It should be 
noted that hardware implementation of these operations are based on the same algorithms 
presented below. 
 
A word about algorithmic efficiency is in order here.  Mathematical algorithms operate on n-bit 
binary numbers, with typical computer architectures having n=16 (as in Hack), 32 or 64.  As a 
rule, we seek algorithms whose running time is proportional (or at least “polynomial”) in this 
parameter n.  Algorithms whose running time is proportional to the value of n-bit numbers are 
unacceptable, since these values are exponential  in n.  For example, suppose we implement the 
multiplication operation yx ⋅  using the “repeated addition” algorithm for i = 1 ... y {sum = sum + 
x}.  If we use this algorithm on a 64-bit computer, y can be as large as 1,000,000,000,000,000,000 
(still smaller than the maximal value 632 ). In such cases, this naïve algorithm may run for years, 
even on the fastest computers.  On the other hand, the running time of the multiplication 
algorithm that we present below is proportional to the number of bits n, and thus will require only 
dozens or a few hundreds of operations on a 64-bit architecture for any value of y.  
 
We will use the standard “Big-Oh” notation, O(n), to describe the running time of algorithms.  
Readers who are not familiar with this notation should simply read O(n) as “in the order of 
magnitude of n”.  With that in mind, we now turn to present a multiplication yx ⋅  algorithm for 
n-bit numbers whose running time is O(n) rather than O(y), which is exponentially larger. 
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Multiplication 
 
Consider the standard multiplication method taught in elementary school.  To compute 356 times 
27, we write the two numbers one on top of the other.  Next, we multiply each digit of 356 by 7.  
Next, we "shift to the left" one position, and multiply each digit of 356 by 2.  Finally, we sum up 
the numbers in the two rows and obtain the result.  The binary version of this technique -- 
Algorithm 1 -- is exactly the same. 
 

The “steps”     The algorithm explained 
(first 4 of 16 iteration) 

             (ignoring some leading zeros, to save clutter) 
   1 0 1 1 = 1 1    x: 0 0 0 1 0 1 1  
    1 0 1 =  5    y: 0 0 0 0 1 0 1 j‘th bit of y 
   1 0 1 1       0 0 0 1 0 1 1 1 
  0 0 0 0        0 0 1 0 1 1 0 0 
 1 0 1 1         0 1 0 1 1 0 0 1 
 1 1 0 1 1 1 = 5 5    1 0 1 1 0 0 0 0 
             x·y: 0 1 1 0 1 1 1 sum 

 
multiply(x,y): 
   initialize sum = 0 
   initialize shiftedX = x 
   for j )1(0 −= nK  do  

        if (j’th bit of y) = 1 then  
             sum = sum + shiftedX 
        shiftedX = shiftedX * 2 

 
ALGORITHM 1:  Multiplication.  

 
This algorithm performs O(n) addition operations on n-bit numbers, where n is the number of bits 
in x and y.  (Note that shiftedX * 2 can be efficiently obtained by either adding shiftedX to itself or 
shifting its bit representation one place to the left.) 
 
Division 
 
The naïve way to compute x / y is to repeatedly subtract y from x until it is impossible to continue 
(i.e. until x<y).  The running time of this algorithm is clearly proportional to the quotient, and 
may be as large as O(x), which is exponential in the number of bits n.  To speed up this 
algorithm, we can try to subtract large chunks of y's from x in each iteration.  For example, if 
x=891 and y=5, we can tell right away that we can deduct a hundred 5's from x and the remainder 
will still be greater than 5, thus shaving 100 iterations from the naïve approach.  Indeed, this is 
the rationale behind the school method for long division.  Formally, in each iteration we try to 
subtract the largest possible shift of y, i.e. Ty ⋅  where T is the largest power of 10 such that 

xTy ≤⋅ .  The binary version of this algorithm is precisely the same, except that T is a power of 2 
instead of 10.   
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It is an easy exercise to formally write down this school algorithm for division, as we have done 
for multiplication.  We find it more illuminating to provide the same logic in the form of a 
recursive program that is probably easier to implement: 
 

divide (x,y): 
   // Integer part of x/y, where x and y are natural numbers. 

   if  y>x return 0 

   q = divide(x, 2*y) 

   if (x – 2*q*y) < y 

        return 2*q 

   else 
        return 2*q + 1 

 
ALGORITHM 2:  Division.  

 
The running time of this algorithm is determined by the depth of the recursion.  Since in each 
level of recursion the value of y is multiplied by 2, and since we terminate once y>x, it follows 
that the recursion depth is bounded by the number of bits in x.  Each recursion level involves a 
constant number of addition, subtraction, and multiplication operations, and thus the total running 
time of the algorithm requires O(n) such operations.   
 
Algorithm 2 may be considered sub-optimal since each multiplication operation also requires 
O(n) addition and subtraction operations. However, careful inspection reveals that the product 
2*q*y can be computed without any multiplication.  Instead, we can rely on the value of this 
product in the previous recursion level, and use a few addition operations to establish its current 
value.   
 
 
Square Root 
 
Square roots can be computed efficiently in a number of different ways, e.g. using the Newton-
Raphson method or a Taylor series expansion.  For our purposes though, a simple binary 
search will suffice.  The square root function xy =  has two convenient properties.  First, it 
is monotonically increasing.  Second, its inverse function  is something that we already 
know how to compute (multiplication).  Taken together, these properties imply that we have 
all we need to compute square roots using binary search.   

2yx =
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sqrt(x):        // Compute the integer part of xy = : 
   //  Find  y such that 22 )1( +<≤ yxy : 
   initialize low = 0  

   initialize high = square root of the largest n-bit number 

   while low < high do  

          med = (low + high) / 2 

          if med * med > x 

                high = med - 1 

          else 

                low = med  

   return low 

 

ALGORITHM 3:  Square root computation using binary search. 
 
Note that each loop iteration takes a constant number of arithmetic operations.  Since the 
difference between high and low shrinks by a factor of 2 in each iteration, the total number of 
iterations is at most the logarithm of the initial value of high-low, which is at most n.  Thus the 
total running time is O(n) arithmetic operations. 
 
1.2 String representation of numbers 

 
Computers represent numbers in memory using binary codes.  Yet humans are used to dealing 
with numbers in a decimal notation.  Thus, when humans have to read or input numbers, and only 
then, a conversion to or from decimal notation must be performed.  Typically, this service is 
implicit in the character handling services provided by the operating system. In other words, 
programmers can write high level code that operates directly on the decimal or textual 
representation of numbers, assuming that the OS will perform the necessary conversions, as 
needed.  We now turn to describe how some of these OS services are actually implemented. 
 
Of course the only subset of characters which is of interest here are the 10 digits which represent 
actual numbers. The ASCII codes of these characters are as follows: 
 

Character: ‘0’ ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’ ‘8’ ‘9’ 
           

ASCII code: 48 49 50 51 52 53 54 55 56 57 

 
As gleaned from the table, single digit characters can be easily converted into their numeric 
representation, and vice versa, as follows.  To compute the ASCII code of a given digit 0<=x<=9, 
we can simply add x to 48 – the code of ‘0’.  Conversely, the numeric value represented by an  
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ASCII code 48<=y<=57 is obtained by y - 48.  And once we know how to convert single digits, 
we can proceed to convert any given integer.  These conversion algorithms can be based on either 
an iterative or a recursive logic, so we present one of each. 
 
 
// Convert a number to a string. 

toString(n): 
      lastDigit = n % 10   

      c = character representing lastDigit 

      if n<10 

          return c (as a string) 

      else  

          return toString(n/10).append(c) 

  
// Convert a string to a number. 

toInt(s): 
n =0 

for i = 1 .. length of s 

     d = integer value of the digit s[i]  

      n=n*10 + d 

return n  
 

(Assuming that s[1] is the most significant digit 
character of s.) 
 

 
ALGORITHMS 4-5:  String-numeric conversion 

 
 
 
1.3 Memory Management 
 
Dynamic Memory Allocation: Some of the memory required for a program’s execution is 
explicitly defined in the program code. For example, static variables are allocated when the 
program starts running, local variables are allocated when a subroutine starts running, and so on.  
Other memory is dynamically requested during the program’s execution. For example, memory 
should be allocated dynamically to accommodate the construction of new objects or arrays whose 
size is determined only during run-time.  This dynamic memory allocation is typically done by 
the operating system.  When a running program constructs a new object of a certain size, enough 
RAM space must be located in memory and then allocated to store the new object. When the 
program declares that the object is no longer needed, its RAM space may be recycled.  The RAM 
segment from which memory is dynamically allocated is called the heap.   
 
Operating systems use various techniques for handling dynamic memory allocation and de-
allocation.  These techniques are implemented in two functions traditionally called alloc() and 
deAlloc().  We present two memory allocation algorithms: a basic one and an improved one. 
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Basic memory allocation algorithm: The data structure that this algorithm manages is a single 
pointer, called free, which points to the beginning of the heap segment that was not yet allocated.  
Algorithm 6-a gives the details. 
 

      // Objects and arrays are stored on the heap. 
Initialization: free=heapBase 
// Allocate a memory segment of size words: 
alloc(size):  
  pointer = free 

  free += size 

  return pointer 

// De-allocate the memory space of a given object: 
  deAlloc(object): 
    do nothing 

 
ALGORITHM 6-a: Basic Memory Allocation Scheme (wasteful) 

 
Algorithm 6-a is clearly wasteful, as it does not reclaim the space of decommissioned objects.    
 
Improved memory allocation algorithm: This algorithm manages a linked list of available 
memory blocks, called freeList.  Each block is characterized by two “housekeeping” fields: the 
block’s length, and a pointer to the next block in the freeList.  These fields can be kept in the two 
memory locations preceding the block itself.  For example, the implementation can use the 
convention b.length==x[-1] and b.next==x[-2].   

 
When asked to allocate a memory segment of size n, the algorithm has to search the freeList for a 
suitable block.  There are two well-known strategies for doing this. Best-fit finds the block whose 
size is the closest (from above) to the required size, while first-fit finds the first block that is long 
enough.  Once the block has been found, the required memory segment is taken from it.  Next, 
this block is updated in the freeList, becoming the part that remained after the allocation (if no 
memory was left in the block, the entire block is eliminated from the freeList).   
 
When asked to reclaim the memory of an unused object, the algorithm inserts the de-allocated 
block into the freeList.  The details are given in Algorithm 6-b. 
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      // Objects and arrays are stored on the heap. 
initialization: 
   freeList = heapBase+2 

   freeList.length = heapEnd–(heapBase+2) 

   freeList.next = null  

// Allocate a memory segment of size words: 
alloc(size): 
  1. use methods like best-fit or first-fit 
     to locate a free block in freeList 

  2. return the base address of that block 

// De-allocate the memory space of a given object: 
deAlloc(object):  

    Append the object to the freeList 

 
ALGORITHM 6-b: Improved Memory Allocation Scheme (with memory recycling) 

 
After a while, dynamic memory allocation schemes like Algorithm 6-b may create a block 
fragmentation problem.  Hence, some kind of “defrag” operation should be considered, i.e. 
merging memory segments that are physically consecutive in memory but logically split into 
different blocks in the freeList.  The defragmentation operation can be done each time an object is 
de-allocated, or when alloc() cannot find an appropriate block, or according to some other 
intermediate or ad-hoc condition. 
 
1.4 Variable length arrays and Strings 
 
The memory allocation operations considered above allocate fixed length memory blocks. This is 
exactly appropriate for arrays in high level programming languages.  Most programming 
languages also provide data-types that have variable length – most commonly strings.  Strings 
contain arrays of characters, whose length may vary.  String objects are usually provided by the 
standard library of the programming language (e.g. the String and StringBuffer classes in Java 
or the strXXX functions in C).  
 
Indeed, the implementation of variable length strings can be done by creating a String class that 
provides the string abstraction and related services.  The standard data structure used in this 
context typically contains an array of characters that holds the string contents, and the current 
length of the string.  Array locations beyond the current length are not considered part of the 
string contents.  When such a data structure is first constructed, some maximum possible length 
must be defined for it, and the array is allocated to be in this size. 
 
1.5 Input/Output Management 
 
An important part of the functionality of an operating system is handling the various I/O devices 
connected to the computer, encapsulating the details of interfacing them, and providing 
convenient access to their basic functionality.  We will describe only the very basic elements of 
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handling the I/O devices available in Hack: a screen and a keyboard.  We will divide the issue of 
handling the screen into two logically separate steps: handling graphics, and handling character 
output. 
 
1.5.1 Graphics output 
 
Pixel drawing: Most computers today use raster, also called bitmap, display technologies.  The 
only primitive operation that can be physically performed in such an output device is that of 
drawing a single pixel (a pixel refers to a single “dot” on the screen). Pixels are specified using 
(column, row) coordinates.  The usual convention is that columns are numbered from left to right 
(like the x-axis in high school) while rows are numbered from the top down (opposite of the y-
axis in high school).  Thus the top left pixel is located in screen location (0,0). 
 
The low level drawing of a single pixel is a hardware-specific operation that depends on the 
particular interface of the screen or the underlying graphics card.  If the screen interface is based 
on a memory map, then drawing a pixel is achieved by writing the proper value into the RAM 
location that represents the required pixel in memory. 
 

drawPixel (x,y): 
// Hardware-specific.  Assuming a memory mapped screen: 

   Write a pre-determined value in the RAM 
    location corresponding to screen location (x,y). 

 
ALGORITHM 7: Drawing a pixel. 

 
Now that we know how to draw a single pixel, we turn to describe how to draw lines and circles.    
 
Line drawing: Recall that the only elementary drawing operation supported by computers is that 
of drawing a single pixel. Hence, when asked to draw a line between two screen locations, the 
best that we can possibly do is approximate the line by drawing a series of pixels along the 
imaginary line that connects the two points.  Note that the “pen” that we use can move in four 
directions only: up, down, left, and right.  Thus the drawn line is bound to be jagged, and the only 
way to make it look good is to use a high-resolution screen.  Since the receptor cells in the human 
eye’s retina also form a grid of “biological pixels,” there is a limit to the image granularity that 
the human eye can resolve.  Thus, high-resolution screens and printers can fool the human eye to 
believe that the lines drawn by pixels or printed dots are actually smooth.  In fact they are always 
jagged. 
 
The procedure for drawing a line from location (x1,y1) to location (x2,y2) starts by drawing the 
(x1,y1) pixel, and then zigzagging in the direction of the (x2,y2) pixel, until it is reached.  See 
Algorithm 8a for the details. 
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drawLine(x,y,x+dx,y+dy): 
// Assuming 0, ≥dydx . 

initialize )0,0(),( =ba  

while dxa ≤  or dyb ≤ do  

          drawPixel ), byax( ++  

          if dybdx //a <  then a++ else b++ 

 
ALGORITHM 8-a: Line Drawing 

 
Algorithm 8-a is applicable only for .  To extend it into a general-purpose line drawing 
routine, one also has to take care of the three other possibilities: , , and 

.   

0, ≥dydx
0, pdydx 0,0 pf dydx

0,0 fp dydx
 
An annoying feature of this algorithm is the use of division operations (a/dx, b/dy) in each loop 
iteration.  This division operation is not only time-consuming -- it also requires floating point 
operations rather than simple integer arithmetic.  A possible solution is to replace the a/dx<b/dy 
condition with the equivalent a*dy<b*dx, which requires only integer multiplication.  Further, 
careful inspection reveals that this latter condition may be checked without using any 
multiplication.  As shown in Algorithm 8-b, this may be done by maintaining a variable that 
updates the value of a*dy-b*dx each time either a or b are modified.   
 

// To test whether dybdxa // < ,  
// maintain a variable adyMinusbdx, and test whether adyMinusbdx<0: 

    Initialization: set adyMinusbdx=0 
When a++ is performed: set adyMinusbdx = adyMinusbdx + dy 

When b++ is performed: set adyMinusbdx = adyMinusbdx - dx 

 
ALGORITHM 8-b: Testing whether dybdxa // <  
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Circle drawing: There are several ways to draw circles on a bitmap screen.  We present an 
algorithm that uses three routines already implemented in this chapter: multiplication, square root 
computation, and line drawing. 

 
Point (0,0) is assumed
to be at the the top left
corner.  Thus x grows
from left to right and
y grows from top
to bottom.

point

r dy
22 dyr −

),( yx

rdy =

2=dy

1=dy

0=dy

1−=dy

2−=dy

rdy −=

),( 22 dyydyrxa +−−= point ),( 22 dyydyrxb +−+=

a b

 
 

drawCircle(x,y,r): 

for each rrK−∈dy do 

  drawLine from ),( 22 dyydyrx +−−  to ),22 dyydyrx +−+(  

 
ALGORITHM 9: Circle Drawing 

 
 
The algorithm is based on drawing a series of horizontal lines (like the typical line ab in the 
figure), one for each row in the range ry −  to ry + .  Since r is specified in pixels, the algorithm 
ends up drawing a line in every screen row along the circle’s north-south diameter, and thus the 
resulting circle is completely filled.  A trivial version of this algorithm can yield an empty circle 
as well. 
 
1.5.2 Character Output 
 
All the output that we described so far was graphical: pixels, lines, and circles.  We now turn to 
describe how characters are printed on the screen.  Well, pixel by pixel.  The first step before 
writing characters on a screen is to divide the physical pixel-oriented screen into a logical 
character-oriented screen suitable for drawing complete characters.  For example, consider a 
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physical 256 rows by 512 columns screen.  If we allocate a grid of 11*8 pixels for drawing a 
single character (11 rows, 8 columns), then our screen can show 23 lines, each holding 64 
characters (with 3 extra rows of pixels left unused).  Note that this calculation accounts for the 
requisite spacing, since the 11*8 allocation includes a 1-pixel space between adjacent lines and a 
2-pixels space between adjacent characters. 
 
Now, for each character that we want to display on the screen, we have to design a suitable 
bitmap.  For example, Figure 10 gives a possible bitmap for the letter “A”. 
 

        
        
        
        
        
        
        
        
        
        
        

 
FIGURE 10: Character bitmap of the letter “a”. 

 
Characters are usually drawn on the screen one after the other, from left to right.  For example, 
the two commands print(”a”) and print(”b”) probably mean that the programmer wants to 
see the image “ab” drawn on the screen.  Thus the character-writing package must maintain a 
“cursor” object that keeps track of the screen location where the next character should be drawn 
on the logical “character screen”.  The cursor information consists of “line” and “column” counts.  
For example, the character screen described in the previous paragraph is characterized (excuse 
the pun) by 0 ≤ line ≤22 and 0≤column≤63.  Drawing a single character at location (line, column) 
is achieved by writing the bitmap of the character onto the box of pixels at rows line*11 … 
line*11 + 10, and columns column*8 … column*8+7.  After a character is drawn, the cursor 
should be moved one step to the right (i.e. column is increased by 1), and when a new line is 
requested, row is increased by 1 and column is reset to 0.  When the bottom of the screen is 
reached, there is a question of what to do next, the common solution being to effect a  “scrolling” 
operation.  Another possibility is erasing the screen and staring over from the top left corner (i.e. 
setting the cursor to (0,0).) 
 
To conclude, we know how to write characters on the screen.  Writing other types of data is now 
easy: strings are written character by character; numbers are written by first converting them to 
strings, and so on. 
 
1.5.3 Keyboard Handling 
 
Handling user-supplied character input is more involved than meets the eye.  When interacting 
with a computer, a human user presses a key on the keyboard for some variable duration of time.  
Yet the program that manages the interaction with the user wants to accept this single character 
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input independently of the time that elapsed between the “key press” and “key release” events..  
Further, we usually want to give some feedback to the user.  First, we typically want to display 
some graphical cursor at the screen  location where the input “goes”.  Second, we typically want 
to echo the actual input by displaying it on the screen at that point.   
 
In the “raw” form of keyboard access, the program gets direct data from the keyboard indicating 
which key is currently pressed by the user.  The access to this raw data depends on the specifics 
of the keyboard interface.  For example, if the keyboard is represented using a memory map, we 
can simply inspect the contents of the relevant RAM area to determine which key is presently 
pressed.  The details of this inspection can then be incorporated into the implementation of 
Algorithm 11. 
 

keyPressed (x,y): 
// Depends on the specifics of the keyboard interface. 
if a key is pressed on the keyboard 
    return the ASCII value of the key 
else 
   return 0 

 
ALGORITHM 11: Capturing (“raw”) keyboard input. 

 
Usually, an input typed by the user is considered final only after the “enter” key has been pressed, 
yielding the new-line character.  Further, users may backspace and erase their previously entered 
characters until this event takes place.  These requirements, along with the “raw” input form 
supplied by the keyPressed routine, can be used to implement the “cooked” form of character 
input expected by human users.  The details are shown in Algorithms 12 and 13. 
 
// Read and echo a single character. 
readChar(): 
     display the cursor 
     while no key is pressed on the keyboard 
          do nothing  // wait till the user presses a key 
      c = code of currently pressed key 
      while a key is pressed 
               do nothing // wait for the user to let go 
      print c at the current cursor location 

        move the cursor one position to the right 

        return c 

      

 // Read a “line” (until new-line). 
readLine(): 
    s = empty string 
    repeat  
         c = readChar() 
         if c == new-line character 
              print new-line 
              return s 
         else if c == backspace character 
              remove last character from s 
              move the cursor 1 pos. back 
         else 
              s = s.append(c) 
     return s 
 

 
ALGORITHMS 12-13: Capturing (“cooked”) keyboard input. 
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2. The Sack OS Specification 
 
This section duplicates “The Jack Standard Library” section from Chapter 9.  The various 
services of the Sack operating system are organized in eight modules, as follows: 
  

 Math:  Provides basic mathematical operations; 

 String: Implements the String type and basic string-related operations; 

 Array:  Defines the Array type and allows construction and disposal of arrays; 

 Output: Handles text based output; 

 Screen: Handles graphic screen output; 

 Keyboard: Handles user input from the keyboard; 

 Memory: Handles memory operations; 

 Sys:  Provides some execution-related services. 
 
This section specifies the subroutines that are supposed to be in these classes. 
 
Math 
 
This class enables various mathematical operations. 
 Function void init(). 

 Function int abs(int x): Returns the absolute value of x. 

 Function int multiply(int x, int y): Returns the product of x and y. 

 Function int divide(int x, int y): Returns the integer part of the x/y. 

 Function int min(int x, int y): Returns the minimum of x and y. 

 Function int max(int x, int y): Returns the maximum of x and y. 

 Function int sqrt(int x): Returns the integer part of the square root of x. 
 
String 
 
This class implements the String data type and various string-related operations. 
 Constructor String new(int maxLength): Constructs a new empty string (of length zero) 

that can contain at most maxLength characters. 

 Method void dispose(): Disposes this string. 

 Method int length(): Returns the length of this string. 

 Method char charAt(int j): Returns the character at location j of this string. 

 Method void setCharAt(int j, char c): Sets the j’th element of this string to c. 

 Method String appendChar(char c): Appends c to this string and returns this string. 

 Method void eraseLastChar(): Erases the last character from this string. 
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 Method int intValue(): Returns the integer value of this string (or at least of the prefix 

until a non numeric character is found). 

 Method void setInt(int j): Sets this string to hold a representation of j. 

 Function char backSpace(): Returns the backspace character. 

 Function char doubleQuote(): Returns the double quote (“) character. 

 Function char newLine(): Returns the newline character. 

 
Array 
 
This class enables the construction and disposal of arrays. 
 Function Array new(int size): Constructs a new array of the given size. 

 Method void dispose(): Disposes this array.  
 
Output 
 
This class allows writing text on the screen.   
 Function void init(). 

 Function void moveCursor(int i, int j): Moves the cursor to the j’th column of the i’th 
row, and erases the character located there. 

 Function void printChar(char c): Prints c at the cursor location and advances the cursor 
one column forward. 

 Function void printString(String s): Prints s starting at the cursor location, and 
advances the cursor appropriately. 

 Function void printInt(int i): Prints i starting at the cursor location, and advances the 
cursor appropriately. 

 Function void println(): Advances the cursor to the beginning of the next line. 

 Function void backSpace(): Moves the cursor one column back. 
 
Screen 
 
This class allows drawing graphics on the screen. Column indices start at 0 and are left-to-right.  
Row indices start at 0 and are top-to-bottom.  The screen size is hardware-dependant (over 
HACK: 256 rows * 512 columns). 
 Function void init(). 

 Function void clearScreen(): Erases the entire screen. 

 Function void setColor(boolean b): Sets the screen color (white=false, black=true) to be 
used for all further drawXXX commands. 

 Function void drawPixel(int x, int y): Draws the (x,y) pixel. 
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 Function void drawLine(int x1, int y1, int x2, int y2): Draws a line from pixel (x1,y1) to 

pixel (x2,y2). 

 Function void drawRectangle(int x1, int y1, int x2, int y2): Draws a filled rectangle 
where the top left corner is (x1, y1) and the bottom right corner is (x2,y2). 

 Function void drawCircle(int x, int y, int r): Draws a filled circle of radius r<=181 
around (x,y). 

 
Keyboard 
 
This class allows reading inputs from the keyboard.   
 Function void init(). 

 Function char keyPressed(): Returns the character of the currently pressed key on the 
keyboard; if no key is currently pressed, returns 0. 

 Function char readChar(): Waits until a key is pressed on the keyboard and released, and 
then echoes the key to the screen and returns the character of the pressed key. 

 Function String readLine(String message): Prints the message on the screen, reads the 
next line (until a newline character) from the keyboard, echoes the line to the screen, and 
returns its value.  This method handles user backspaces. 

 Function int readInt(String message): Prints the message on the screen, reads the next 
line (until a newline character) from the keyboard, echoes the line to the screen, and 
returns the integer until the first non numeric character in the line.  This method handles 
user backspaces. 

 
Memory 
 
This class allows direct access to the main memory.   
 Function void init(). 

 Function int peek(int address): Returns the value of the main memory at this address. 

 Function void poke(int address, int value): Sets the value of the main memory at this 
address to the given value. 

 Function Array alloc(int size): Allocates the specified space on the heap and returns a 
reference to it. 

 Function void deAlloc(Array o): De-allocates the given object and frees its memory 
space. 

 
Sys 
 
This class supports some execution-related services. 
 Function void init(): Calls the init functions of the other OS classes (where appropriate) and 

then calls the Main.main() method. 

 Function void halt(): Halts the program execution. 
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 Function void error(int errorCode): Prints the error code on the screen and halts. 

 Function void wait(int duration): Waits approximately duration milliseconds and returns.  
 
 
3. Implementation 
 
This section provides some hints and suggestions for implementing the various classes of the 
Sack OS using Jack over the Hack platform. 
 
Initialization: In each OS class that requires class-level initialization, the class-level initialization 
code is embedded in a single init routine.  This routine is then called (once) by the OS’s 
Sys.init routine, as part of the “booting” process.  This is explained further below, in the Sys 
class implementation tips.  
 
Math: The multiplication and division algorithms 1 and 2 are designed for natural (non-negative) 
numbers only. A simple way of handling negative numbers is doing all calculations on absolute 
values and then setting the sign appropriately.   For the multiplication algorithm, this is not really 
needed since it turns out that if the input numbers are given in 2’s complement then the results 
will be correct with no further ado.   

 
Note that in each iteration j of the multiplication Algorithm 1, the jth bit of the second number is 
extracted.  We suggest to encapsulate this operation as follows: 
 

bit(x,j): Returns true if the jth bit of the integer x is 1 and false otherwise. 
 

The bit(x,j) function can be easily implemented using shifting operations.  Alas, Jack does not 
support shifting.  Instead, to speed up this function implementation in Jack, it may be convenient 
to define a fixed static array of length 16, say twoToThe[j], whose jth location holds the value 2 
to the power of j.  This array may be initialized once (in Math.init), and then used, via bitwise 
Boolean operations, in the implementation of bit(x,j). 
 
In the division Algorithm 2 we multiply y by a factor of 2 until y>x.  A detail that needs to be 
taken into account is that y can overflow.  This overflow can be detected by noting when y 
becomes negative. 

 
For computing the square root (Algorithm 3), notice that 123276733124 152 −=>=182 , and 
thus the binary search can be limited to the range 0..181. 
 

String: The ASCII codes of newline, backspace and doubleQuote are 128, 129 and 34 
respectively. 

Array: Note that the “new” function is not really a constructor, despite the fact that it looks like 
one.  Therefore, memory space for a new array should be explicitly allocated using a call to 
Memory.alloc().   Similarly, de-allocation must be done explicitly. 
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Output: We suggest using character maps of 11*8, leading to 23 lines of 64 characters each.  
Since building character maps of all ASCII characters is quite a burden, we supply such maps for 
you (except for one or two characters which are left as an exercise).  In particular, we supply Jack 
code that gives for each printable ASCII character an array that holds its bit map (using a “font” 
that we created).  The array holds 11 entries, each corresponding to a row of pixels.  Each row is 
given as a binary number whose bits represent the 8 pixels in the row.   
 
There is no need to implement scrolling. 
 
Memory: The peek and poke functions should provide direct access to the underlying memory. 
As it turns out, the Jack language includes a trapdoor that enables the programmer to gain 
complete control of the computer’s memory.  This hacking trick can be exploited to enable the 
implementation of peek and poke using plain Jack programming.  The trick is based on an 
anomalous use of reference variables (pointers).  Specifically, the Jack language does not prevent 
the programmer from assigning a constant to a reference variable.  This constant can then be 
treated as an absolute memory address.  In particular, when the reference variable happens to be 
an array, this trick can give convenient and direct access to the entire computer memory: 
 

// To create a Jack-level "proxy" of the RAM: 
var Array memory; 

let memory=0; 

// From this point on we can use code like: 
let x = memory[j]  // where j is any RAM address    
let memory[j] = y  // where j is any RAM address    

 
PROGRAM 14: A trapdoor enabling complete control of the RAM from Jack. 

 
Following the first two lines of Program 14, the base of the memory array points to the first 
address in the computer's RAM.  To set or get the value of the RAM location whose physical 
address is j, all we have to do is manipulate the array entry memory[j].  This will cause the 
compiler to manipulate the RAM location whose address is 0+j, which is precisely what we want 
to do.  
 
Recall that in Jack, arrays are not allocated space on the heap at compile-time, but rather at run-
time, when the array's new method is called.  Here, however, a new initialization will defeat the 
purpose, since the whole idea is to anchor the array in a particular address rather then let the OS 
allocate it to an address in the heap that we don't control.  In short, this hacking trick works 
because we use the array variable without initializing it "properly", as we would do in normal 
usage of arrays. 
 
The higher level functions alloc and deAlloc manipulate the heap.  Recall that the standard 
implementation of the VM over the Hack platform specified that the heap resides at RAM 
locations 2048-16383. 
 
Screen: Drawing a pixel on the screen is done by directly accessing its memory map using 
Memory.peek() and Memory.poke().  Recall that the memory map of the screen on the hack 
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platform specifies that the pixel at column c and row r (0≤c≤511, 0≤r≤255) is mapped to the 
c%16 bit of memory location 16384 + r*32 + c/16.  Notice that drawing a single pixel requires 
changing a single bit in the accessed word, a task that can be achieved in Jack using bit-wise 
operations. 
 
The only tricky element in the other graphic operations here is avoiding overflow.  Overflow in 
the line drawing Algorithm 8 will not occur if you use the suggested efficient implementation for 
determining whether a/dx<b/dy.   
 
The specification of the drawCircle routine limits circle radiuses to be at most 181.  This 
eliminates the possibility of overflow when using the suggested circle drawing Algorithm 9. 
 
Keyboard: Recall that the memory map of the keyboard on the Hack platform is at memory 
location 24576.   The method keyPressed() provides “raw” access to this memory location and 
can be implemented easily using Memory.peek().  The other methods provide the required 
“cooking”. 
 
Sys: An application program written in Jack is a collection of classes. One class must be named 
Main, and this class must include a method named main.  In order to start running the application 
program, the Main.main() method should be invoked.  Now, it should be understood that the 
operating system is itself a program.  Thus, when the computer boots up, we want to start running 
the operating system program first, and then we want the OS to start running the application 
program.  Indeed, the VM specification states a bootstrap code that automatically invokes a VM 
function called Sys.init().  This Sys.init() function, which is part of the OS’s Sys class, 
should then call the init() methods of the other OS classes (libraries), and then call the 
Main.main() method of the application program. 
 
The Sys.wait function can be implemented pragmatically, under the limitations of the Hack 
platform.  In particular, you can use a loop that runs approximately n milliseconds before it (and 
the method) returns. You will have to time your specific computer to obtain a one millisecond 
wait (this constant varies from one CPU to another).  As a result, your Sys.wait() function will 
not be portable, but that's life. 
 
The Sys.halt function can be implemented by entering an infinite loop. 
 
4.Perspective 

 
The standard class library presented in this chapter was given the name “operating system” due to 
its main conceptual goal: encapsulation of the gory hardware details, omissions, and 
idiosyncrasies in a clean software packaging.   However, the gap between what we called here an 
operating system and an “industrial strength” operating system is rather large.   
 
Our “operating system” completely lacks some of the very basic components most closely 
associated with operating systems.  The Hack/Jack system supports no multi-threading or multi-
processing; in contrast the very kernel of most operating systems is devoted to exactly that.  The 
Hack/Jack system has no mass storage devices; in contrast the main information kept and handled 
by operating systems is the file system.  The Hack/Jack system has neither a textual user interface 
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(as in a Unix shell or a DOS window), nor a graphical one (windows, mouse, icons, etc.); in 
contrast this is the operating system aspect that users expect to see and interact with.   Numerous 
other services commonly found in operating systems are not present here: security, 
communication, and more. 
 
A central feature of most operating systems is that their code is somehow more “privileged” than 
user code – the hardware platform forbids non-system code to perform various operation that are 
allowed to OS code.   Consequently, access to operating system services requires a mechanism 
that is more elaborate than a simple function call.  Further, programming languages usually wrap 
these OS services in regular functions or methods.  In our case there is no difference between 
normal code and OS code, and OS system services run in the same “user mode” as that of the 
application program. 
 
Our operating system does however include some of the most fundamental OS services, e.g. 
managing memory, driving I/O, handling initialization, as well as supplying mathematical 
functions not implemented in hardware.  Additionally, our operating system supplies some 
services that are normally found in the standard libraries of programming languages, e.g. the 
String abstraction.  Consistent with the spirit of this book, all these OS services are described and 
implemented in the simplest possible way, but not simpler. 
 
The algorithms that we presented for multiplication and division are very standard.  However, in 
most cases these algorithms, or a variant thereof, are implemented in hardware rather than in 
software.  The running time of the presented multiplication and division algorithms is O(n) 
addition operations.  Since adding two n-bit numbers requires O(n) bit operations (gates in 
hardware), multiplication and division require O(n^2) bit operations.  There are algorithms whose 
running time is asymptotically significantly faster.  For a large number of bits, these algorithms 
are more efficient. 
 
 
5. Build It 
 
This project describes a modular implementation of the entire Sack operating system.  The OS is 
implemented as a collection of eight classes.  Each of these classes can be implemented in 
isolation. Further, the classes may be developed and incrementally tested in any particular order.  
 
Objective: Implement the Sack operating system and test it by executing application programs 
that use OS services. 
 
Resources: The main tool that you need in this project is Jack -- the language in which you have 
to develop the OS. This implies that you will also need the supplied Jack compiler, to compile 
your OS implementation as well as the supplied test programs.  In order to facilitate partial 
testing of the OS, you will also need the supplied OS, consisting of 8 .vm files (one for each OS 
class).  Finally, you will need the supplied VM Emulator.  This program will be used as the 
platform on which the actual test takes place.  In order to start the project on the right foot, we 
also supply skeletal Jack files for each OS class. 
 
Contract: Write the OS implementation and test it by running all the test programs and testing 
scenarios described below. 
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Recommended Testing Strategy 
 
Here are the project materials: 
 
• Skeletal OS classes: We supply one Jack file for each OS class.  This file includes the 

“signatures” (interfaces) of all the functions and methods that should be implemented, with 
empty implementations. Your job is to provide the missing implementations according to the 
class API and the suggested algorithms. 

 
• Test programs: For each OS class, we supply a separate test program written in Jack. In 

addition, we supply the Jack code of the Pong game as a “master” test. 
 
We suggest that each class be developed and unit-tested in isolation.  This can be done by 
compiling the OS class that you write and then putting the resulting .vm file in a directory that 
contains the other 7 .vm OS files and the .vm files of the respective test program.  In particular, 
after implementing an OS class, you may follow these steps: 
 

1) Copy your implemented OS class (Jack file) into the directory that contains the 
corresponding supplied test program (a collection of one or more Jack files); 

2) Compile the entire directory using the supplied Jack Compiler; 

3) Copy all the supplied OS .vm files (except the one that you have just compiled) 
into the directory. 

4) At this point the directory should contain an executable program consisting of the 
eight .vm files related to the OS and one .vm file for each class in the test program; 

5) Execute this program by opining the entire directory in the VM Emulator; 

6) Proceed to test if the OS services are working properly according to the guidelines 
given below for each OS class. 

 
After testing successfully each OS class in isolation, test your entire OS implementation using the 
Pong game.  Put all your OS .jack files in the Pong directory, compile the directory, and execute 
the game in the VM Emulator.  If the game works, that’s pretty good. 
 
Testing 
 
Memory, Array, Math: In addition to the requisite .jack files, the test materials for each of 
these classes also include a .tst test script and a compare .cmp file for execution on the VM 
Emulator. To test your implementation of each one of these three OS classes, execute the given 
test scripts on the VM Emulator and make sure that the comparison ends successfully. Note that 
Memory.alloc and Memory.deAlloc are not fully tested, since a full test depends on internal 
implementation details not visible in user-level testing. Thus it is recommended to test these two 
methods using step-by-step debugging in the VM Emulator. 
 
The remaining test programs do not include test scripts. They should be compiled and executed 
on the VM Emulator as is. 
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String: Execution of the corresponding test program should yield the following output: 
  
new,appendChar: abcde 
setInt: 12345 
setInt: -32767 
length: 12 
charAt[2]: 99 
setCharAt(2,'-'): ab-de 
eraseLastChar: ab-d 
intValue: 456 
intValue: -32123 
backSpace: 129 
doubleQuote: 34 
newLine: 128 
 
 
 
 
Output: Execution of the corresponding test program should yield the following output: 
 
A                                                              B 
 
0123456789 
ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz 
!#$%&'()*+,-./:;<=>?@[\]^_`{|}~ 
-12346789 
 
 
 
 
 
 
 
 
 
C                                                              D 
 
 

Screen: Execution of the corresponding test program should yield the following output: 
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Keyboard: This OS class is tested using a test program that effects some program-user 
interaction. For each function in the Keyboard class (keyPressed, readChar, readLine, 
readInt) the program requests the user to press particular keys on the keyboard. If the function is 
implemented correctly and the correct keys are pressed, the program prints the text “ok” and 
proceeds to test the next function. If not, the program repeats the request for the same function. If 
all requests end successfully, the program prints ‘Test ended successfully’, at which point the 
screen may look as follows: 
 
keyPressed test: 
Please press the 'Page Down' key 
ok 
readChar test: 
(Verify that the pressed character is echoed to the screen) 
Please press the number '3': 
ok 
readLine test: 
(Verify echo and usage of 'backspace') 
Please type 'JACK' and press enter: 
ok 
readInt test: 
(Verify echo and usage of 'backspace') 
Please type '-32123' and press enter: "); 
ok 
 
Test completed successfully 
 
 
 

Sys: Only two functions in this class can be tested: Sys.init and Sys.wait. The supplied test 
program tests the Sys.wait function by requesting the user to press any key, waiting for two 
seconds (using Sys.wait) and then printing another message on the screen. The time that elapses 
from the moment the key is released until the next message is printed should be two seconds. 
 
The Sys.init function is not tested explicitly.  However, recall that it performs all the necessary 
OS initializations and then -- by definition -- calls the Main.main function of each test program.  
Therefore, we can assume that nothing would work properly unless Sys.init is implemented 
correctly.  A simple way to test Sys.init in isolation is to run Pong using your Sys.vm file. 
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Appendix A: Hardware Description Language (HDL)1 
 

Intelligence is the faculty of making artificial objects,  
especially tools to make tools. 

 
 Henry Bergson, (1859-1941) 

 
 
A Hardware Description Language (HDL) is a formalism used to define and test chips: objects 
whose interfaces consist of input and output pins that carry Boolean signals, and whose bodies 
are composed of inter-connected collections of other, lower level, chips.  This appendix describes 
a typical HDL, as understood by the hardware simulator supplied with the book.  Chapter 1 
provides essential background to this appendix, and thus it is recommended to read it first. 
 
How to use this appendix: This is a technical document, and thus there is no need to read it from 
beginning to end.  Instead, it is recommended to focus on selected sections, as needed. Also, 
HDL is an intuitive and self-explanatory language, and the best way to learn it is to play with 
some HDL programs in the hardware simulator.  Therefore, we recommend to start 
experimenting with HDL programs as soon as you can, beginning with the following example. 
 
1. Example 
 
The following HDL program specifies a chip that accepts two 4-bit numbers and outputs whether 
they are equal or not. The chip logic uses Xor gates to compare the 4 bit-pairs, and then outputs 
true if all the comparisons are “equal”. 
 

/** Returns 1 if the two inputs are equal and 0 otherwise. */ 
CHIP EQ4 { 
   IN  a[4],b[4];   // 4-bit busses 
   OUT out;         // true iff a=b 
   PARTS:    
   Xor(a=a[0],b=b[0],out=c0); 
   Xor(a=a[1],b=b[1],out=c1); 
   Xor(a=a[2],b=b[2],out=c2); 
   Xor(a=a[3],b=b[3],out=c3); 
   Or(a=c0,b=c1,out=c01); 
   Or(a=c01,b=c2,out=c012); 
   Or(a=c012,b=c3,out=neq); 
   Not(in=neq,out=out); 
} 

 
Each internal part Xxx invoked by an HDL program is in itself a stand-alone chip defined in a 
separate Xxx.hdl program like the one listed above.  Thus the chip designer who wrote the 
above program assumed the existence of three other chips: Xor.hdl, Or.hdl, and Not.hdl.  

                                                 
1 From The Elements of Computing Systems, Nisan & Schocken, MIT Press, forthcoming in 2003, www.idc.ac.il/csd 
 

 



Appendix A: HDL                                                                                                                                                2    
              
Importantly, though, the chip designer need not worry about how these chips are implemented.  
The internal parts are always viewed as black boxes, allowing the designer to focus only on their 
proper arrangement in the current chip architecture. 
 
Thanks to this modularity, all HDL programs, including those that describe high-level chips, can 
be kept short and readable.  For example, a complex chip like RAM32K can be implemented using 
a few internal parts, each described in a single HDL line.  When fully evaluated by the hardware 
simulator all the way down the recursive chip hierarchy, these internal parts are expanded into 
many thousands of inter-connected elementary logic gates.  Yet the chip designer need not be 
concerned by this complexity, and can focus instead only on the chip’s topmost architecture. 
 
Comment: the EQ4.hdl program is not supplied with the book.  If you want to experiment with 
it, you have to create the EQ4.hdl text file and load it into the hardware simulator. 
 
2. Conventions 
 
File Extension: Each chip is defined in a separate text file.  A chip whose name is Xxx is defined 
in file Xxx.hdl. 
 
Chip structure: A chip definition consists of a header and a body.  The header provides a full 
specification of the chip interface, while the body describes the chip implementation.  The header 
acts as the chip’s API, or public documentation.  The body should not interest people who use the 
chip as internal part in other chip definitions. 
 
Syntax conventions: HDL is case-sensitive.  By convention, HDL keywords are written in 
upper-case letters. 
 
Identifiers naming: Names of chips and pins may be any sequence of letters and digits not 
starting with a digit.  By convention, chip and pin names start with a capital letter and a lower-
case letter, respectively.  For readability, upper-case letters can be used in the middle of identifier 
names. 
 
White space: Space characters, newline characters, and comments are ignored. 
 
Comments: The following three comment formats are supported:  
 

//  comment to end of line 
/*  comment until closing */ 
/** API documentation comment */ 

 
3. Loading Chips into the Simulator 
 
HDL programs (chip descriptions) are loaded into the simulator environment in three different 
ways.  First, the user can open an HDL file interactively, via a "load file" menu or GUI icon.  
Second, a test script (discussed below) can include a "load Xxx.hdl" command, which has the 
same effect.  Finally, whenever an HDL program is loaded and parsed (e.g. EQ4.hdl), every chip 
name Yyy listed in it as internal part (e.g. Xor) causes the simulator to load the respective 
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Yyy.hdl file (e.g. Xor.hdl), all the way down the recursive chip hierarchy.  In every one of 
these cases, the simulator goes through the following logic: 
 

if <chip name>.hdl exists in the current directory 
     then load it (and all its descendents) into the simulator 
else 
     if <chip name>.hdl exists in the simulator’s BuiltIn chips directory 
         then load it (and all its descendents) into the simulator 
     else 
         issue an error message. 

 

The simulator’s BuiltIn directory contains executable versions of all the chips specified in the 
book, except for the highest-level chips (CPU, Memory, and Computer).  Hence, one may 
construct and test a chip before all, or even any, of its lower-level chip parts have been 
implemented: the simulator will automatically invoke their built-in versions instead. 
Alternatively, if a lower-level chip Xxx has been implemented by the user in HDL, the user can 
still force the simulator to use its built-in version instead, by simply moving the Xxx.hdl file 
out from the current directory.   Finally, in some cases the user (rather than the simulator) may 
want to load a built-in chip directly, e.g. for experimentation.  To do so, navigate to the BuiltIn 
directory – a standard part of the hardware simulator environment -- and select the desired chip 
from there. 
 
4. Chip Header (Interface) 
 
The header of an HDL program has the following format: 
 

CHIP <chip name> { 
   IN <input pin name>, <input pin name>, ... ; 
   OUT <output pin name>, <output pin name>, ... ; 
   // Here Comes the Body 
} 

 CHIP declaration: The CHIP keyword is followed by the chip name. The rest of the HDL 
code appears between curly brackets. 

 Input pins: The IN keyword is followed by a comma-separated list of the names of the chip 
input pins.  The list is terminated with a semi-colon. 

 Output pins: The OUT keyword is followed by a comma-separated list of the names of the 
chip output pins.  The list is terminated with a semi-colon. 

Input and output pins are assumed by default to be single-bit wide.  A multi-bit bus can be 
declared using the notation <pin name>[w]. (e.g. “a[4]” in EQ4.hdl). This specifies that the 
pin is a bus of width w.  The individual bits in a bus are indexed 0 ... w-1, from right to left (i.e. 
index 0 refers to the least significant bit).  
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5. Chip Body (Implementation) 

Parts 
A chip typically consists of several lower-level chips, connected to each other and to the chip 
input/output pins in a certain topology that forms the chip logic.  This logic, designed by the HDL  
programmer to deliver the chip’s desired functionality, is described in the chip body using the 
following format: 
  

PARTS: 
<internal chip part>; 
<internal chip part>; 
. . .  
<internal chip part>; 

 
Each one of these statements describes one internal chip with all its connections, using the 
following syntax: 

<chip name>(<connection>, ... , <connection>); 
 
Throughout this document, the presently defined chip is called chip, and the lower level chips 
listed in the PARTS section are called parts.  

Pins and Connections 
The syntax of a connection specification is: 
 

<part's pin name> = <chip's pin name> 
 

Connections describe how a part is connected to the overall chip architecture: each connection 
describes how one pin of the part is connected to another pin in the chip definition.   In the 
simplest case, one may connect the part’s pin to an input or output pin of the chip.  In other cases, 
we have to connect the part’s pin to another pin of another part.  This is done by defining an 
internal pin (a chip level object), and connecting the pins of the two parts to it.  Thus, the 
definition of an internal pin is essentially the same as creating and naming a wire that connects an 
output pin of one chip to the input pin of another. 
 
Internal pins:  In order to connect an output pin of Part1 to the input pins of other parts, the 
HDL programmer can create and use an internal pin, say v, as follows: 
 

Part1(...,out=v);     // out of Part1 is piped into v 
Part2(in=v,...);      // v is piped into in of Part2 
Part3(a=v, b=v,...);  // v is piped into a and b of Part 3 

  
An internal pin (like v above) acts like a pipe that receives a value from one part and feeds it into 
one or more other parts.  Internal pins are created as needed when they are specified the first time 
in the HDL program, and require no other definition.  Each internal pin has fan-in 1 and 
unlimited fan-out.  In other words, an internal pin can be fed from a single source only, yet it can 
feed (through multiple connections) many other parts. In the above example, the internal pin v 
simultaneously feeds both Part2 (through in) and Part3 (though a and b). 
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Input pins: Each input pin of a part may be fed by one of the following sources: 

• An input pin of the chip; 

• An internal pin;   

• One of the constants true and false, representing 1 and 0, respectively. 
 
Each input pin has fan-in 1, meaning that it can be fed by one source only.  Thus 
Part(a=v,b=v,...) is a valid statement (assuming that both a and b are input pins of the 
part), whereas Part(a=v,a=u,...) is not. 
 
Output pins: Each output pin of a part may feed one of the following destinations: 

• An output pin of the chip; 

• An internal pin. 

Buses 
Each pin used in a connection -- whether input, output, or internal -- may be a multi-bit bus.  The 
widths (number of bits) of input and output pins are defined in the chip header.  The widths of 
internal pins are deduced implicitly by the simulator, as explained below.  
 
In order to connect individual elements of a multi-bit bus input or output pin, the pin name (say 
x) may be sub-scripted using the syntax x[n..m]=v, where v is an internal pin. This means that 
only the bits indexed n to m (inclusive) of pin x are connected to the specified internal pin.  An 
internal pin (like v above) may not be subscripted, and its width is deduced implicitly from the 
width of the bus pin to which it is connected the first time it is mentioned in the HDL program. 
 
The constants true and false may also be used as buses, in which case the required width is 
deduced implicitly from the context of the connection. 
 
Example: Consider the following chip:  
 

CHIP Foo { 
   IN in[8]       // 8-bit input 
   OUT out[8]     // 8-bit output 
   // Foo’s body (irrelevant to the example) 
} 

 
Suppose now that Foo is invoked by another chip using the part statement: 
 

Foo(in[2..4]=v, in[6..7]=true, out[0..3]=x, out[2..6]=y) 
 
Where v is a previously declared 3-bit internal pin, bound to some values.  In that case, the 
connections in[2..4]=v and in[6..7]=true will bind the in bus of the Foo chip to the 
following values: 
 

Bit:  7 6 5 4 3 2 1 0 in: 
Contents: 1 1 ? v[2] v[1] v[0] ? ? 
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Now, let us assume that following its processing, the Foo chip returns the following set of values 
(an arbitrary assumption): 
 

Bit:  7 6 5 4 3 2 1 0 out: 
Contents: 1 1 0 1 0 0 1 1 

 
In that case, the connections out[0..3]=x  and out[2..6]=y will yield: 
 

Bit:  3 2 1 0X: 
Contents: 0 0 1 1

 
 

Bit:  4 3 2 1 0y: 
Contents: 1 0 1 0 0

 
 
6. Built-In Chips 
 
The hardware simulator features a library of built-in chips that can be used as internal parts by 
higher-level chips. Built-in chips are implemented in code written in a programming language 
like Java, operating behind an HDL interface. Thus, a built-in chip has a standard HDL header 
(interface), but its HDL body (implementation) declares it as built-in.  For example, consider the 
following built-in version of a typical Register chip:  
 

/** 16-bit register. 
If load[t]=1 then out[t+1]=in[t] else out does not change */ 
CHIP Register { 
   IN in[16], load;  
   OUT out[16]; 
   BUILTIN Register;  //  refers to register.class , a compiled Java class 
   CLOCKED in, load;  //  this command is explained later in this appendix 
} 

 
The identifier following the keyword BUILTIN is the name of the program unit that delivers the 
chip functionality.  The present version of the hardware simulator is built in Java, and all the 
built-in chips are implemented as compiled Java classes.  Hence, the HDL body of a built-in chip 
has the following format: 
 

BUILTIN <Java class name>; 
 
Where <Java class name> is the name of the Java class that models the intended chip behavior.  
Normally, this class will have the same name as that of the chip, e.g. Register.class. All the 
built-in chips (compiled Java class files) are stored in a directory called BuiltIn, which is a 
standard part of the simulator's environment. 
 
Built-in chips provide three special services: 
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 Foundation: Some chips are the atoms from which all other chips are built.  In particular, 

we use the Nand gate and the D-Flip-Flop gate as the building blocks of all 
combinational and sequential chips, respectively. Thus the hardware simulator features 
built-in versions of Nand.hdl and DFF.hdl. 

 Certification & Efficiency: In order to modularize the development and testing of 
hardware construction projects, the chips that participate in the project can be made 
available in built-in versions.  Thus one may construct a chip before constructing its 
lower-level parts – the simulator will automatically invoke their built-in versions.  
Additionally, it makes sense to use built-in versions even for chips that were already 
constructed, since the former are typically much faster and more space-efficient than the 
latter (simulation-wise). For example, consider a RAM4K chip. When you write and debug 
the file RAM4K.hdl, the simulator creates a memory-resident data structure consisting of 
thousands of lower-level chips, all the way down to the D-Flip-Flop gates at the bottom of 
the recursive chip hierarchy.  Although this top-down drilling must be done when you 
develop and test the RAM4K chip, there is no need to repeat it each time the chip is used as 
part in higher-level chips, e.g. RAM16K.  Best practice tip: To boost performance and 
minimize errors, always use the supplied built-in versions of chips whenever they are 
available.   

 Visualization:  Some high-level chips, e.g. memory units, are easier to understand and 
debug if their operation can be inspected visually.  To facilitate this service, selected built-
in chips can be endowed with GUI side effects. This GUI is displayed whenever the chip 
is loaded into the simulator or invoked as a lower-level part by the loaded chip.  Except 
for these visual side effects, GUI-empowered chips behave, and can be used, just like any 
other chip.   Section 8 contains more details about GUI-empowered chips. 

 
7. Sequential Chips 
 
Computer chips are either combinational or sequential (also called clocked).  The operation of 
combinational chips is instantaneous.  Thus, when a user or a test script changes the values of one 
or more of the input pins of a combinational chip and presses the “eval” button, the simulator 
responds by immediately setting the chip output pins to a new set of values, as computed by the 
chip logic. In contrast, the operation of sequential chips is clock-regulated. In particular, when the 
inputs of a sequential chip change, the outputs of the chip may change to new values only at the 
beginning of the next time unit, as effected by the simulated clock. 
 
In fact, sequential chips may change their output values when the time changes even if none of 
their inputs changed.  In contrast, combinational chips never change their values just because of 
the progression of time.   

The Clock 
The simulator models the progression of time by a built-in device, called clock, which is 
controlled by “Tick” and “Tock” operations.  These operations generate a series of time units, 
each consisting of two phases: a “Tick” ends the first phase of a time unit and starts its second 
phase, and a “Tock” moves to the first phase of the next time unit. The real time that elapsed 
during this period is irrelevant for simulation purposes, since we have full control over the clock.  
In other words, either the simulator’s user or a test script can issue Ticks and Tocks at will, 
causing the clock to generates a series of simulated time units.  
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The two-phased time units regulate the operations of all the sequential chip parts in the simulated 
chip architecture, as follows.  During the first phase of the time unit (Tick), the inputs of each 
sequential chip in the architecture are read and affect the chip’s internal state, according to the 
chip logic.  During the second phase of the time unit (Tock), the outputs of the chip are set to the 
new values.  Hence, if we look at a sequential chip “from the outside,” we see that its output pins 
stabilize to new values only at “Tocks” – between consecutive time units.   
 
There are two ways to control the simulated clock: manual and script-based.  First, the simulator's 
GUI features a clock-shaped button called “TickTock”. A “Tick” (one click on this button) ends 
the first phase of the clock cycle, and a “Tock” (subsequent click) ends the second phase of the 
cycle, bringing on the first phase of the next cycle, and so on. Alternatively, one can run the clock 
from a test script, e.g. using the command repeat n {tick,tock,output;}.  This script 
command instructs the simulator to advance the clock n time units, and to print some values in 
the process.  Test scripts and commands like repeat and output are described in detail in 
appendix B. 

Clocked Chips and Pins 
 
A built-in chip can declare its dependence on the clock explicitly, using the statement:  
 

CLOCKED <pin>, <pin>, ..., <pin>; 
 

Where each pin is either an input pin or an output pin, as declared in the chip header.  The 
inclusion of an input pin x in the CLOCKED list instructs the simulator that changes to x should 
not effect any of the chip’s output pins until the beginning of the next time unit. The inclusion of 
an output pin x in the CLOCKED list instructs the simulator that changes in any of the chip’s input 
pins should not effect x until the beginning of the next time unit.  Note that it is quite possible 
that only some of the input or output pins of a chip are declared as clocked.  In that case, changes 
in the non-clocked input pins may affect the non-clocked output pins in a combinational manner, 
i.e. independent of the clock.  In fact, it is also possible to have the CLOCKED keyword with an 
empty list of pins, signifying that even though the chip may change its internal state depending 
on the clock, changes to any of its input pins may cause immediate changes to any of its output 
pins. 

The “clocked” property of chips: A primitive (built-in) chip is said to be explicitly clocked 
when it includes a CLOCKED statement.  A composite (not built-in) chip is said to be implicitly 
clocked when one or more of its lower-level chip parts are clocked.  This property is checked 
recursively, all the way down the chip hierarchy, where a built-in chip may be explicitly clocked.  
If such a chip is found, it renders every chip that depends on it (up the hierarchy) implicitly 
clocked.   It follows that nothing in the HDL code of a composite chips suggest that they may be 
clocked – the user can know that only from the chip documentation. 

Example: The built-in D-Flip-Flop chip is defined as follows:  
 

/** Clocked D-Flip-Flop. out[t+1]=in[t] */ 
CHIP DFF { 
  IN in; 
  OUT out; 
  BUILTIN DFF; // implemented by a DFF.class Java program. 
  CLOCKED in,out;  } 
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Every sequential chip in our computer architecture depends in one way or another on (typically 
numerous) DFF chips.  For example, the RAM64 chip is made up from eight RAM8 chips.  Each 
one of these chips is made from eight lower-level Register chips.  Each one of these registers is 
made from many Bit chips.  And each one of these chips contains a DFF part.  It follows that 
Bit, Register, RAM8, RAM64 (and all the memory units above them) are also clocked, or 
sequential, chips. 
 
It’s important to remember though that a sequential chip may well contain combinational logic 
which is not effected by the clock.  For example, the structure of every sequential RAM chip 
includes combinational circuits that manage its addressing logic (described in Chapter 3). 

Feedback Loops  
We say that the use of a chip entails a feedback loop when the output of one of its parts affects 
the input of the same part, either directly or through some (possibly long) path of dependencies.  
For example, consider the following two examples of direct feedback dependencies: 

Not(in=loop1, out=loop1)  // invalid 

DFF(in=loop2, out=loop2)  // valid 
 
In both examples, an internal pin (loop1 and loop2) attempts to feed the chip’s input from its 
output, creating a cycle.  The difference between the two examples is that Not is a combinational 
chip whereas DFF is sequential, or clocked.  Thus, loop1 creates an instantaneous and 
uncontrolled dependency, whereas the dependency that loop2 creates is delayed by the clock 
dependency of the underlying pins (as defined in the DFF logic).  In general, we have the 
following:   
 
Valid/invalid Feedback loops: When the simulator loads a chip, it checks recursively if its 
various connections entail feedback loops.  For each loop, the simulator checks if the loop goes 
through a clocked pin, somewhere along the loop.  If so, the loop is allowed. Otherwise, the 
simulator stops processing and issues an error message.  This is done in order to avoid the 
uncontrolled “data races” that occur in combinational feedback loops from outputs to inputs.  The 
only way to fix a chip with a combinational feedback loop is to redesign its logic.  
 
 
 
8. Visualizing Chip Operations 
 
Built-in “GUI-empowered” chips feature visual side effects, designed to illustrate internal chip 
operations using graphics and animation.  Like any other chip, a GUI-empowered chip can come 
to play in two possible ways.  First, the user can load it directly into the simulator.  Second, and 
more typically, the built-in chip is invoked by the simulator automatically, whenever it is used as 
part in more complex chips.  In both cases, the simulator displays the chip’s graphical image on 
the screen.  Using this image, which is actually an executable GUI component, the user may 
inspect the current contents of the chip as well as change its internal state, when this operation is 
supported by the chip implementation. 
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The present version of the simulator features the following set of GUI-empowered chips: 

ALU: Displays the ALU’s inputs and output as well as the presently computed function. 

Registers (ARegister -- address register, DRegister -- data register, and PC -- program 
counter): Displays the contents of the registers and allows to modify them. 

Memory chips (RAM and ROM): Displays a scrollable array-like image that shows the contents 
of all the memory locations, and allows the user to manipulate them.  If the contents of a 
memory location change during the simulation, the respective entry in the GUI changes as 
well. In the case of the ROM chip (which serves as the instruction memory of our computer 
platform), the GUI also features a button that enables the user to load into it a machine 
language program from an external text file. 

I/O chips (Screen and Keyboard): If the HDL code of a loaded chip invokes the built-in 
Screen chip, the hardware simulator displays a 256 rows by 512 columns window that 
simulates the physical screen.  When the RAM-resident memory-map of the screen changes 
during the simulation, the respective pixels in the screen GUI change as well, via a “refresh 
logic” embedded in the simulator implementation. 

If the HDL code of a loaded chip invokes the built-in Keyboard chip, the simulator displays a 
clickable keyboard icon.  Clicking this button connects the real keyboard of your computer to 
the simulated chip.  From this point on, every key pressed on the real keyboard is intercepted 
by the simulated chip.  If the user moves the mouse focus to another area in the simulator GUI, 
the control of the keyboard is restored to the real computer. 

 
Example: To illustrate how the simulator deals with GUI-empowered chips, consider the 
following HDL program, which uses the built-in chips RAM16K, Screen, and Keyboard: 
 

// Demo of GUI-empowered chips. 
// The logic of this chip is meaningless, and is used merely to  
// force the simulator to display some GUI-empowered chips. 
CHIP GUIDemo { 
  IN in[16],load, address[15]; 
  OUT out[16]; 
  PARTS: 
  RAM16K(in=in,load=load,address=address[0..13],out=a); 
  Screen(in=in,load=load,address=address[0..12],out=b); 
  Keyboard(out=c); 
} 

 
The chip logic feeds the 16-bit in value into two destinations: register number address in the 
RAM16K chip and register number address in the Screen chip (presumably, the HDL 
programmer who wrote this code has figured out the widths of these address pins from the API's 
of these chips).  In addition, the chip logic routes the value of the currently pressed keyboard key 
to the internal pin c.  These meaningless operations are designed for one purpose only: 
illustrating how the simulator deals with built-in GUI-empowered chips.  The actual impact is 
shown in Figure 1. 
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FIGURE 1: GUI-empowered Chips. Since the loaded HDL program uses GUI-empowered chips 
as internal parts (step 1), the simulator draws their respective GUI images (step 2).  When the 
user changes the values of the chip input pins (step 3), the simulator reflects these changes in the 
respective GUIs (step 4).  The tiny horizontal line (circled) is the visual side effect of storing –1 
in memory location 5012.  Since the 16-bit 2's complement binary code of –1 is 
1111111111111111, the computer draws 16 pixels starting at the 320th column of row 156, which 
happen to be the screen coordinates associated with address 5012 of the memory map (the exact 
memory-to-screen mapping is given in Chapter 4). 
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9 List of Built-In Chips 
 

Name Specified  
in chapter 

Has 
GUI Comment 

Nand  1  Foundation of all combinational chips 
Not  1   
And  1   
Or  1   
Xor 1   
Mux  1   
DMux  1   
Not16 1   
And16 1   
Or16 1   
Mux16 1   
Or8way 1   
Mux4way16 1   
Mux8way16 1   
DMux4way 1   
DMux8way 1   
HalfAdder 2   
FullAdder 2   
Add16 2   
ALU 2   
Inc16 2   
DFF 3  Foundation for all sequential chips 
Bit 3   
Register 3   
ARegister 3  Identical operation to Register, with GUI 
DRegister 3  Identical operation to Register, with GUI 
RAM8 3   
RAM64 3   
RAM512 3   
RAM4K 3   
RAM16K 3   
PC 3  Program Counter 
ROM32K 5  GUI allows loading a program from a text file 
Screen 5  GUI connects to a window on the actual screen 
Keyboard 5  GUI connects to the actual keyboard  

 
TABLE 2: All the built-in chips supplied with the present version of the Hardware Simulator. 
A built-in chip has an HDL interface but is implemented as an executable Java class.  
 

In future versions of the simulator, we plan to release a simulator-extension API, allowing 
programmers to write additional built-in chip implementations.  Needless to say, the present 
simulator version can still execute any desired chip written in HDL; the ability to create built-in 
chip implementations in other languages is an optional luxury designed to add GUI effects, 
improve execution speed, and facilitate behavior chip simulation before it is built in HDL. 
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Appendix B: Test Scripting Language1 
 

Mistakes are the portals of discovery 

 (James Joyce, 1882-1941) 
 
Appendix A described how to define and simulate chips.  This appendix describes how to test and 
debug chip definitions.  This is done by subjecting the HDL program representing the chip to 
various tests.  The tests can be administered in an ad-hoc and interactive fashion, using the 
simulator GUI, or in a pre-planned and batch-style fashion, following a series of tests specified in 
a script file.  This appendix describes the language in which test scripts are written, as understood 
by the hardware simulator supplied with this book.  Chapter 1 provides essential background to 
this subject, and thus it is recommended to read it first. 
 
The scripts that test a newly designed chip can be written either by the person who implements 
the chip, or by the hardware architect who ordered the chip done and specified its interface.  As a 
matter of best practice, we recommend to use both approaches.  Indeed, for every chip specified 
in the book, we provide an “official” test script, written by us.  Thus, although you are welcome 
to test your chip designs in any way you see fit, the contract is such that eventually, your chip 
definitions have to pass our tests. 
 
How to use this appendix: This is a technical document, and thus there is no need to read it from 
beginning to end.  Instead, it is recommended to focus on selected sections, as needed. Like HDL, 
the test scripting language is rather intuitive, and the best way to learn it is to play with some 
sample scripts in the hardware simulator. 
 
1. Example 
 
The following script is designed to test the EQ4 chip described in section A.1.  
 

load EQ4.hdl,         // load the HDL program into the simulator. 
output-file EQ4.out,  // write the script outputs to this file. 
compare-to EQ4.cmp,   // compare the script outputs to this file. 
output-list a b out;  // each subsequent output command should  
                      // print the values of a,b and out.       
set a %B0000, set b %B0000, eval, output; 
set a %B1111, set b %B1111, eval, output;  
set a %B1111, set b %B0000, eval, output; 
set a %B1111, set b %B0000, eval, output; 
set a %B0000, set b %B1111, eval, output; 
set a %B0001, set b %B0000, eval, output; 
set a %B0101, set b %B0010, eval, output; 
// Since the chip has two 4-bit inputs, an exhaustive test 
// requires 2^4*2^4=256 such scenarios. 

 

                                                 
1 From The Elements of Computing Systems, Nisan & Schocken, MIT Press, forthcoming in 2003, www.idc.ac.il/csd 
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A test script normally starts with some initializations commands, followed by a series of 
simulation steps, each ending with a semicolon.  A simulation step typically instructs the 
simulator to bind the chip input pins to some test values, evaluate the chip outputs, and write 
selected variable values into a designated output file.  This logic is affected by the hardware 
simulator, as illustrated in Fig. 1. 
 

 
 

FIGURE 1: Running a test script. Each test script command ends with a comma. A sequence of 
commands that ends with a semicolon constitutes a simulation step (The beginning  of the current 
simulation step is highlighted with a yellow bar).  The user controls the script execution by 
clicking the VCR buttons on the top left.  Note that this particular script starts by loading the 
EQ4.hdl chip description into the simulator.   

 
2. Conventions 
 
File Extension: Test scripts are stored in text files with .tst extensions.  Typically (but not 
necessarily), a script designed to test an Xxx.hdl program will be named Xxx.tst.  Note 
however that the same chip can be tested by more than one script. 
 
Current directory: The practice of developing and testing a chip involves at least one and 
typically four text files: the mandatory chip description file (.hdl), a test script file (.tst), a 
script-generated output file (.out), and a supplied compare-to file (.cmp).  All these files should 
be kept in the same directory on the user's computer.  
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The current directory is defined as the directory that contains the last file (whether chip or script) 
opened by the user from the simulator environment. 
 
Built-in chips: The built-in chips (residing in the simulator's BuiltIn directory) can be opened 
and tested by regular scripts, just like any other chips.  All the built-in chips supplied with the 
simulator were rigorously tested, but one can experiment and re-test them for instructive 
purposes. 
 
White space: Space characters, newline characters, and comments are ignored. 
 
Comments: The following comment formats are supported: 
 

//  comment to end of line 
/*  comment until closing */ 
/** API documentation comment */ 

 
3. Data Types and Variables 
 
Test scripts support one data type: integers.  Integer constants can be expressed in hexadecimal 
(%X prefix), binary (%B prefix), or decimal (%D prefix) format, the latter being the default.  These 
values are always translated into their equivalent 2's complement binary values. For example, the 
four  commands set a1 %XFFFF, set a2 %B11, set a3 %D11, set a4 -1 will set the 
respective variables to the binary values 1111111111111111, 11, 1011, and 1111111111111111. 
 
Script commands can manipulate three types of variables: pins, variables of built-in chips, and 
the system variable time. 
 
Pins: Script commands can access the current values of all the input, output, and internal pins of 

the simulated chip.  For example, the command set in 0 sets the value of the pin whose 
name is in to 0. 

 
Variables of built-in chips: External implementations of built-in chips can expose internal 

variables that can be manipulated by test scripts.  We delay the discussion of these 
variables to Section 7. 

 
Time: A read-only system variable, representing the number of time-units that elapsed since the 

simulation started running.  Each rise and fall of the clock (a clock cycle, also known in 
our jargon as "TickTock") constitutes a single time-unit.  

 
4. Command Structure 
 
Command Terminators: A script is a sequence of commands.  Each command is terminated by 
a comma, a semicolon, or an exclamation mark.  These terminators have the following semantics: 

 Comma (,): terminates a script command. 
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 Semi-colon (;): terminates a script command and a simulation step.  A simulation step 

consists of one or more script commands.  When the user instructs the simulator to 
"single-step" via the GUI, the simulator executes all the script logic from the current 
command until a semi-colon is reached, at which point the simulation is paused. 

 Exclamation mark (!): terminates a script command and causes the simulator to stop the 
script execution.  The user can later resume the script execution from that point onwards.   

 
Command Syntax: Each command is written as a sequence of white space-separated identifiers.  
Identifiers are composed of any symbol except for terminators or white space. The script is not 
case sensitive. 
 
It is convenient to describe the script commands in two conceptual sections.  "Set up commands" 
are used to load files and initialize some global settings. "Simulation commands" walk the 
simulator through a series of tests.  We now turn to describe these two categories of commands.  
 
5. Set Up commands 
 
Load <hdl file>: Loads the file into the simulator. The <hdl file> must include the .hdl 

extension and must not contain a path specification. The simulator will try to load the file 
from the current directory, and, failing that, from the simulator's BuiltIn directory, as 
described in Section A.3 (Appendix A). 

 
Output-file <file name>: Instructs the simulator to write further output to the named file, 

which must include an .out extension. The output file will be created in the current 
directory.   

 
Output-list <v1, v2, . . . >: Instructs the simulator what to write to the output file in every 

subsequent output command in this script (until the next output-list command, if any).  
Each value in the list is a variable name followed by a formatting specification..  The 
command also produces a single header line consisting of the variable names.  Each item v in 
the output-list has the following syntax: 

 
<variable name><format><padL>.<len>.<padR> 

 
This directive instructs the simulator to write padL spaces, then the current value of 
variable name in the specified format using len columns, then padR spaces, then 
the symbol “|”.  Format can be either %B (binary), %X (hexa), or %D (decimal). The 
default output specification is <variable name>%B1.1.1. 
 
For example, consider the command: 
 

Output-list time%D0.5.2 reset%B1.1.1 PC%D2.3.2 A%X2.4.2 D%X2.4.2 
 

This command may produce the following output (after two subsequent output 
commands): 
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         | Time  |reset|   PC  |   A    |   D    | 
|   37  | 0   |   21  |  001F  |  AA80  | 
|   38  | 0   |   31  |  001F  |  AA80  | 

 
Compare-to <file name>: Instructs the simulator that each subsequent output line should be 

compared to its corresponding line in the specified comparison file (which must include the 
.cmp extension).  If any two lines are not the same, the simulator displays an error message 
and halts the script execution.  The compare file is assumed to be present in the current 
directory. 

 
6. Simulation Commands 
 
Set <variable name> <value>: Assigns the value to the variable.  The variable is either a pin or 

an internal variable of the simulated chip.  The magnitude of value must match the variable's 
width.  For example, if x is a 16-bit pin and y is a single bit pin, then set x 153 is valid 
whereas set y 153 will yield an error and halt the simulation. 

Eval: Instructs the simulator to apply the chip logic to the current values of the input pins and 
compute the resulting output values. 

Output: Let us assume that a compare file has been previously declared via the compare-to 
command.  The output command causes the simulator to go through the following logic: 
1. Get the current values of all the variables listed in the last output-list command; 
2. Create an output line using the format specified in the last output-list command; 
3. Write the output line to the output file; 
4. If the output line differs from the current line of the compare file, display an error msg; 
5. Advance the line cursors of the output file and the compare file.  

Tick: Ends the first phase of the current clock cycle (time unit). 

Tock:  Ends the second phase of the current time unit, and advances to the first phase of the next 
time unit. 

Repeat num {commands}: instructs the simulator to repeat the sequence of script  commands 
enclosed in the curly brackets num times.  If num is omitted, the simulator repeats the 
commands until the simulation has been stopped for some other reason. 

While <Boolean condition> {commands}: instructs the simulator to repeat the commands inside 
the curly brackets as long as the Boolean condition is true. The condition is of the form <x op 
y> where x and y are either constants or variable names, and op is one of the following: =, >, 
<, >=, <=, <>. 

Echo <text>: instructs the simulator to print the text in the status line (part of the simulator GUI). 
The text must be enclosed in “”.  

Clear-echo: instructs the simulator to clear the status line. 

<Built-in chip name> <method name> <argument(s)>: Built-in chip implementations can 
expose methods that perform chip-specific operations. The syntax of these operations varies 
from one built-in chip to another and is documented in their API’s.  This command option is 
described in detail in the next section. 
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7. Internal variables and methods of built-in chips 
 
External implementations of built-in chips can expose internal variables via the syntax 
chipName[varName], where varName is an implementation-specific variable.  The exposed  
variables (if any) of the built-in chip should be documented in the chip’s API.  For example, 
consider our built-in version of a RAM16K chip.  The API of this memory chip documents that any 
individual location in it can be accessed via the syntax RAM16K[i], where i is between 0 to 
16383.  Such internal variables can be manipulated by test scripts, using standard SET commands 
like "set RAM16K[1017] 15".  This particular command will set memory location number 
1017 to the 2’s complement binary value of 15.  In addition, since the built-in RAM16K chip has 
GUI side effects, the new value will also be displayed on the chip’s visual image. 
 
If a built-in chip maintains an internal state (as in sequential chips), the current value of the state 
can be accessed through the convention chipName[], but only if the internal state can be 
represented by a single-value variable. For example, when simulating the built-in Register 
chip, one can write script commands  like set Register[] -5324.  This command sets the 
internal state of the chip to the 2’s complement binary value of –5324.  In the next time unit, the 
out pin of the Register chip will start to emit this value. 
 
Built-in chips can also expose implementation-specific methods that can be used in scripts as 
commands. For example, in the hardware platform specified in this book, programs reside in an 
Instruction Memory unit  implemented by a chip called ROM32K. The contract is such that before 
one runs a machine language program on this computer, one must first load a program into its 
Instruction Memory.  In order to facilitate this service, our built-in implementation of the ROM32K 
chip features a “load <file name>” method,  where the <file name> argument is a text file that, 
hopefully, contains machine language instructions.  This chip-specific method can be accessed by 
test scripts, via commands like “ROM32K load myprog.hack”.  Presently, this is the only 
method supplied by any of our built-in chips.  
 

 Chip Name Variable name/s Width/Data range 
Register Register[] 16-bit (-32768…32767)  
ARegister Aregister[] 16-bit  
DRegister Dregister[] 16-bit  
PC (program counter) PC[] 15-bit (0..32767)  
RAM8 RAM8[0..7] Each entry is 16-bit 
RAM64 RAM64[0..63] “ 
RAM512 RAM512[0..511] “ 
RAM4K RAM4K[0..4095] “ 
RAM16K RAM16K[0..16383] “ 
ROM32K ROM32K[0..32767] “ 
Screen Screen[0..16383] “ 
Keyboard Keyboard[] 16-bit, read-only 

 
TABLE 2: Exposed internal variables of all the built-in chips supplied with the 
Hardware Simulator. These variables can be manipulated from test scripts.  
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8. Ending Example 
 
We end the appendix with a relatively complex test script, designed to test the top-most 
Computer chip.  One way to test the Computer chip is to load a program into it and monitor the 
outputs of the various hardware components as the computer executes the program, one 
instruction at a time.  For example, we wrote a program that (hopefully) computes the maximum 
of RAM[0] and RAM[1] and writes the result to RAM[2].  The machine language version of this 
program is stored in the text file max.hack. Note that at the very low level in which we operate, 
if such a program does not run properly it can be either because the program has bugs or the 
hardware has bugs (and, for completeness, it may also be that the test script or the hardware 
simulator have bugs).  For simplicity, let us assume that the program is error-free. 
 
To test the Computer chip using this program, we wrote a test script called ComputerMax.tst.  
This script loads the Computer chip into the hardware simulator and then loads the max.hack 
program into its ROM chip.  A reasonable way to check if the chip works properly is as follows: 
put some values in RAM[0] and RAM[1], reset the computer, run the clock, and inspect RAM[2]. 
This, in a nutshell, is what the supplied test script is designed to do: 
  

/* ComputerMax.tst script. 
   The max.hack program computes the maximum of  
   RAM[0] and RAM[1] and writes the result in RAM[2]. 
*/ 
// Load the chip, and set up for the simulation 
load Computer.hdl, output-file Computer.out, 
compare-to ComputerMax.cmp, 
output-list RAM16K[0] RAM16K[1] RAM16K[2];  
// Load the max.hack program into the built-in ROM32K chip 
ROM32K load max.hack, 
// set the first 2 cells of the built-in RAM16K chip to some test values 
set RAM16K[0] 3, 
set RAM16K[1] 5, 
output; 
// run the clock enough cycles to complete the program's execution 
Repeat 14 { 
    tick,tock, 
    output; 
} 
// Reset the Computer 
set reset 1, 
tick,          // run the clock in order to commit the Program 
tock,          // Counter (a sequential chip) to the new reset value 
output; 
// Re-run the same program with different test values 
set reset 0,   // “de-reset” the computer (committed in next tick-tock) 
set RAM16K[0] 23456, 
set RAM16K[1] 12345, 
output; 
Repeat 14 { 
    tick,tock, 
    output; 
} 

 
Note: We know that 14 cycles are sufficient to execute this program by trial and error, since 
we’ve experimented with this script before. 


